

Prospero

Language
September 1990

Prospero Software
^LANGUAGES FOR MICROCOMPUTER PROFESSIONALS

COPYRIGHT

Copyright © 1988, 1990 Prospero Software. All rights reserved.

This document is copyright and may not be reproduced by any method,
translated, transmitted, or stored in a retrieval system without prior written
permission of Prospero Software.

Permission is granted to Prospero C licence holders to abstract and use any
of the programming examples.

DISCLAIMER

While every effort is made to ensure accuracy, Prospero Software cannot be
held responsible for errors or omissions, and reserve the right to revise this
document without notice.

TRADEMARKS

Acknowledgement is made for references in this manual to Apple, Lisa and
Macintosh, which are trademarks of Apple Computer Inc., to WordStar,
which is a trademark of MicroPro International Corp., to Digital Research
and GEM, which are trademarks of Digital Research Inc., to Atari and Atari
ST, which are trademarks of Atari Corp., to Motorola and MC68000, which
are trademarks of Motorola Inc., and to Unix, which is a trademark of
AT&T Bell Laboratories.

Prospero C, Pro Fortran-77, Prospero Fortran, Pro Pascal and Prospero
Pascal are trademarks of Prospero Software.

Prospero Software, Inc. Prospero Software Ltd.
100 Commercial Street, Suite 306 190 Castelnau
Portland, Maine 04101 London SW13 9DH
U.S.A England

C is a programming language originated by Dennis Ritchie, working at
AT&T's Bell Laboratories in the early 1970's. It is a general purpose
programming language which has achieved widespread popularity by
combining a wealth of operators with a simplicity that allows extremely
efficient programs to be coded. Many operating systems have been coded in C,
most notably UNIX, and the language has been implemented on a very wide
range of computer systems.

In 1982, an standardization committee was set up by the American National
Standards Institue (ANSI) in order to produce a standard for the laguage. The
latest draft of the Standard has not yet been officially approved, but is expected
to become an official Standard in the next year or so, with only minor changes.

PROSPERO C

Prospero C is a complete implementation of the August 1987 draft of the
proposed ANSI standard for C for use on the Atari ST range of computers.
Prospero C includes:

• Workbench for easy programming
• Four window Programmer's editor
• C syntax checker
• C compiler
• Linker

• Librarian

• Cross reference generator
• Symbolic debugger
• Complete ANSI C library with many extensions
• Complete GEM AES and VDI bindings
• 1000 pages of documentation.

The Prospero C compiler is a true compiler, generating native machine code
for efficient program execution.

FORMAT OF THIS MANUAL

Prospero C is accompanied by a user manual in four volumes. This is Volume
1, and is divided into several parts.

Part I contains the directions for installing and operating the software
(Workbench, compiler, object programs, etc.), the options available, format
of diagnostics, hints on program testing, and suchlike matters. There are also
details of hardware requirements and installation and configuration
procedures.

Part II covers various aspects of the Prospero C implementation, including
details of the hardware and operating system interfaces.

Part III forms a detailed reference manual for writing programs in Prospero
C, and describes all features of the language.

There are appendices giving the formal syntax, the compile-time and run-time
error codes, the ASCII character set, observations on mixed-language
programs, and definitions of terms, limits, and implementation specific
behavior.

Volume 2 describes the Prospero C library functions.

Volumes 3 and 4 contain descriptions of the GEM bindingsfor making use of
the GEM VDI and AES functions.

i

:

C

!

I

Contents

PART I - PROSPERO C OPERATION

1 Introduction 1

1.1 Prospero C 1
1.2 GEM 2
1.3 About this manual 4
1.4 Contents of the package 5
1.5 Installation details 6

1.5.1 Hardware requirements 6
1.5.2 Delivery 6
1.5.3 Installation on a hard disk 7
1.5.4 Installation on floppy disks 8
1.5.5 Installation on a RAM disk 9
1.5.6 Workbench configuration 10

2 Simple edit, compile and link 12

3 Operation of the Workbench 17

3.1 The Workbench menus 23
23

24

27

30

35

37

38

40

3.2 Workbench key combinations 44
>mbinations 44

46

47

Operation of the compiler 48

4.1 Compile-time options 49
4.1.1 Compiler output to LOG file - option G 49
4.1.2 Source listing to PRN file - option L 50
4.1.3 Include source line information - option N 50
4.1.4 Check array indexes - option I 50
4.1.5 Check assignments against bounds - option A 51
4.1.6 Check pointers - option P 51
4.1.7 Accept strict ANSI C Standard only - option S 51
4.1.8 Char is unsigned - option U 52
4.1.9 Generate compact code - option C 52
4.1.10 Wait after errors - option W 52
4.1.11 Autosave after compilation - option V 52

4.2 Check syntax 53

3.1.1 Desk menu

3.1.2 File menu

3.1.3 Block menu

3.1.4 Find menu

3.1.5 Compile menu
3.1.6 Link menu

3.1.7 Run menu

3.1.8 Options menu
Workbench key combinations

3.2.1 WordStar style control key
3.2.2 Alt key combinations
3.2.3 Special key combinations

Contents

4.3 Command line version 53
4.3.1 The one-line command 53
4.3.2 Conversational mode 53
4.3.3 Making use of variables 54
4.3.4 Command-line macros 54

4.4 Compiler messages 55

Operation of the linker 57

5.1 Simple use of the Linker 58
5.1.1 Link 58
5.1.2 With small libraries 58
5.1.3 WithCGEM 58
5.1.4 With control file 59
5.1.5 Link other file 59

5.2 Linking using a control file 60
5.2.1 Stack allocation 61
5.2.2 Linker maps 61
5.2.3 Module Specifications 62

5.3 Command line version 63
5.3.1 The one-line command 63
5.3.2 Conversational mode 63
5.3.3 Indirect mode 64

5.4 Linker messages 64
5.4.1 Non-fatal errors 64
5.4.2 Fatal errors 65

Operation of object programs 6 7

6.1 Arguments to main 67
6.2 Pre-connected files 67
6.3 Run-time errors 67
6.4 Miscellaneous errormessages 68

Operation of the librarian 7 0

7.1 Forms of invocation 70
7.1.1 The one-line command 70
7.1.2 Conversational mode 71
7.1.3 Indirect mode 72

7.2 Report options 72
7.2.1 Module listing (M) 72
7.2.2 Cross-reference listing (X) 73
7.2.3 Unsatisfied references listing (U) 73
7.2.4 Suppress '.' names (N) 73
7.2.5 Listings to disk (D) 73

7.3 Module selection 74
7.4 Librarian messages 75

Contents

7.4.1 Normal messages 75
7.4.2 Error messages 75

The symbolic debugger 77

8.1 General description 77
8.2 Sample session 79
8.3 General guidance on using Probe 80

8.3.1 GEMDOS aspects 80
8.3.2 The start-up file 80
8.3.3 Entry after runtime errors 81
8.3.4 Working with SID and other programs 81

8.4 Probe command parameters 82
8.4.1 Character set and source tokens
8.4.2 Identifiers 82
8.4.3 Number constants 82
8.4.4 String constants 83
8.4.5 Special symbols 83
8.4.6 Identifiers and qualifiers 84
8.4.7 Break and watch specifiers 85

8.5 Probe commands 86
8.5.1 assign 86
8.5.2 break 86
8.5.3 calls 88
8.5.4 display 88
8.5.5 echo 88
8.5.6 go
8.5.7 help 89
8.5.8 key 90
8.5.9 list 90
8.5.10 output 91
8.5.11 profile 91
8.5.12 quit 92
8.5.13 route 92
8.5.14 step 93
8.5.15 trace 93
8.5.16 view 94
8.5.17 watch 94
8.5.18 X (execute) 95
8.5.19 Z (hexadecimal display) 95

8.6 Command syntax summary 96

The cross-reference generator 98

9.1 Operation from the Workbench 98
9.2 Operation from the command-line 99

7

y

Section 1 - Introduction L_l_

1 INTRODUCTION

1.1 Prospero C

Welcome to Prospero C. Thank you for purchasing this product. Wc hope
you enjoy using it; please let us know if you encounter any problems using it
or if you have any suggestions for improvements.

Prospero C is a professional quality ANSI-standard C compiler for the Atari
ST.

It is designed for use by the most demanding professional programmers who
want to exploit the power of this machine to the full, and by educators and
students who prefer to learn about C on this attractive machine using a
standards-conforming language.

Prospero has a reputation for producing high quality languages and their
Pascal and Fortran compilers for the Atari ST, IBM PC and other machines
are used by programmers in government service, universities, the
professions and in science and technology laboratories around the world.

At the time of writing, the C standard has not been adopted by ANSI, so
officially there is no such thing as ANSI-standard C. The Prospero C
compiler meets the standard as defined in the latest draft of the proposed
standard; when the standard is accepted we will reissue this product to take
account of any developments. If you find any ways in which you believe our
implementation of C does not conform to the standard, please write to us.

Prospero C has many aspects: it is an excellent C compiler, it is a
programming environment, it is an effective and accurate calculating
machine, it gives access to all the facilities of the Atari ST, both directly
through operating system calls, and indirectly through the GEM graphics
interface. In addition, it provides and documents the bindings which are
necessary to use GEM facilities within your programs, if that is what you
want to do. The programming environment provides an excellent example
of the sort of GEM application you can produce, and demonstrates some of
the features GEM offers. However, it is certain to be initially more difficult
to write programs to run under GEM than using the 'vanilla' scrolling
screen mode of interaction. GEM is introduced in the following section and
discussed in greater detail in Volumes 3 and 4.

1-2 Section 1 - Introduction

1.2 GEM

The Workbench provided with this product runs under GEM, and two of the
four volumes of this manual are devoted to the use of GEM, so some

explanation of GEM, its function and purpose follows. However, the use of
GEM in your C programs is entirely optional, and certainly it is far simpler
to write programs which do not use it. However, if you invest the time to
learn how to use GEM in your programs, you can produce powerful and
user-friendly software. As the GEM graphics calls are independent of the
specific hardware, and GEM is implemented on a number of machines as
well as the Atari, you can also write extremely portable software.

GEM is an applications programming environment provided as part of the
ROM firmware on your Atari ST computer; it is a piece of software that sits
between the applications program which you write, and the microcomputer's
operating system. It has two simple objectives: firstly to make your
programming job easier in the long term; secondly to make it easier for the
user of your programs.

GEM is active in two important areas: graphics input and output, and the
user interface. Both of these are a problem in traditional "A prompt"
programming.

Graphics poses technical problems because the graphical input and output
requirements of computers are not standard - the Atari has three different
screen resolutions, all of which are driven slightly differently - and many
different ways of telling a computer to draw a square.

GEM provides a hardware-independent interface between your programs
and the computer; this means it has two layers - a standard layer which
interprets whatever your program asks it to do, and a variable, device-
specific, part with sections of program called drivers which are written
specially for each type of screen, keyboard, printer, plotter etc. The
program makes calls to the standard part, knowing that the output will be
the same (as far as possible) regardless of what the hardware in use is, and
therefore the program needs no knowledge of what hardware will be in use
when it is run, and portable graphics programs can be written. Thus, for
example, if your program uses a window with a close box, when you tell
GEM to draw the window it will use the information from the screen driver

in use to calculate what size the close box should be, and then issue a draw
command for a square of appropriate size and fill color. Your program may
have been written using one screen resolution; when it is run on another
screen resolution - or on a different computer where GEM is available with
a completely different screen - GEM will ensure that it works correctly.

Section 1 - Introduction L3_

The user interface problem is one of standardization - some programmers
like to use menus which are selected by letters, others like function keys,
some programmers use a particular key for one thing, and some use it for
something completely different. Any new users of a program will expect to
have finger trouble - they will use commands they learnt in another
program and be surprised when they don't work. There have been some
attempts at standardization - for example the control key commands used in
WordStar are copied to a greater or lesser extent in other programs. The
result is almost total confusion, and results in a big training problem for
computer users.

GEM provides what is needed - a radical new approach. The first step
involves separating the control functions from the keyboard so that everyone
can forget whatever key sequences he or she knows and start again with a
clear mind. The device used by GEM is the mouse - a small box moved
around the user's desk which causes a pointer to move round on the screen.
The mouse isn't the only pointing device that has been invented, but it has
several advantages.

The conventional screen with lines of text has, added to it, various borders
and menu areas which always work in a consistent way. For example any
user knows that a box at the top left-hand corner of a window means
"close". So any user looking at a GEM program he has never seen before
will know that he can move the pointer so it points at a box at the top left of
whatever he sees on the screen and click on the left hand button, and the
whatever will go away.

These visual ideas originated with the Smalltalk language developed at
Xerox PARC. These have become popular on the Apple Lisa and Macintosh,
and have now been brought to your Atari in GEM. Without going into
detail, GEM provides a large vocabulary of user interface devices; with
them you can make your programs much easier to understand and use -
avoiding the need for elaborate manuals and complex training programs.

~7 VA Section 1 - Introduction

1.3 About this manual

This manual is presented in four volumes and runs to some 1000 pages.
About half of this is the description of the GEM bindings and how to use
them, and this will perhaps indicate how much GEM provides. It is sub
divided as follows:

Volume 1

Part I

Part II

Part III

App.

Volume 2

Library

Volume 3

VDI

Volume 4

AES

How to use Prospero C
Prospero C Implementation details
Prospero C Language Definition
Appendices

Prospero C Library details

GEM VDI Bindings

GEM AES Bindings

Part I tells you how to install and am the programs in this package. Part II
tells you about the way in which the C language is implemented, mentioning
the standard features and describing Prospero extensions in more detail. Part
III is a complete reference guide to Prospero C. This is not intended as a
teach yourself guide to C; many excellent books have been written to fill this
gap. The Appendix contains much useful information and includes a source
language syntax definition and various error code listings. The second
volume describes the C library functions which you can use from your
programs. The third volume describes the VDI bindings, which concern
GEM's graphics output primitives. The fourth volume describes the library
of AES bindings, which concern the user of GEM's user interface facilities,
such as windows and pull-down menus.

I

Section 1 - Introduction L5_

1.4 Contents of the package

'Ihe implementation follows the norma! practice for compiled (as opposed to
interpreted) C in that a source program is first created using the built-in
editor, converted to machine code by the compiler, and then linked with a
selection of support routines from the library using the link editor, to
produce an executable version of the program. The executable version can
then be directly invoked by the operating system (many times, if desired)
without any further direct use of the C software. Thus four essential parts of
the package are the editor, compiler, the link editor, and the library of
support routines.

- The editor forms part of the 'Workbench' -a GEM application
called C-BENCH.PRG, which is used to control the creation and
modification of C source text files and the invocation of the

compiler, linker and utility programs. The final executable
program (or any other program) can also be invoked from the
Workbench if desired, or it can be executed as a 'stand-alone'
program completely independently.

- The compiler can be invoked from the Workbench when
required. It consists of two main processing programs Cl.OVL
and C2.0VL. These may search for the file of error message
texts C.ERR if the need arises. A stand-alone version C.TTP is
also supplied.

- The link editor program can also be invoked from the
Workbench, and is called PROLINK.OVL. A stand-alone version
of the linker PROLINK.TTP is also supplied, which can be
executed independently from the Workbench.

- Three libraries are provided. CLIB.BIN contains the standard C
functions and Prospero C extensions and run time support.
CLIBS.BIN is an alternative version of CLIB which can be used to
produce smaller programs when no floating point support is
required. One of the above is always required. CGEM.BIN
contains the GEM AES and VDI bindings, and is required for any
program making use of GEM.

In addition to the compiler, link editor and standard libraries, there are
three other major items in the package. These are the symbolic debug
program PROBE.PRG (with its file of help texts PROBE.HLP), the cross
reference program CXREF.TTP, and the library manager PROLIB.PRG
which will be important for users wishing to construct their own libraries.
All these can be invoked from the Workbench program.

^1-6 Section 1 - Introduction

1.5 Installation details

1.5.1 Hardware requirements

The hardware required to run Prospcro C is an Atari ST computer, a
screen, a user memory area of at least 400K bytes, and at least 720K. bytes
of disk storage.

1.5.2 Delivery

The Prospero C software is delivered on disks containing the following files:

C-BENCH.PRG

C-BENCH.RSC

Cl.OVL

C2.0VL

C.ERR

CFIRST.BIN

CL1B.BIN

CFIRSTO.BIN

CLIB0.BIN

CGEM.BIN

LAST.BIN

PROLINK.OVL

PROLIB.PRG

PROBE.PRG

PROBE.HLP

CXREF.TTP

C.TTP

PROLINK.TTP

H*.H

Prospero GEM Workbench (control)
Workbench resource file

Compiler (Pass 1) overlay
Compiler (Pass 2) overlay
Compile-time error messages

Standard library header
Standard library
Alternative (small) library header
Alternative (small) standard library
GEM AES and VDI bindings library
Standard library footer

Linker overlay
Librarian program
Symbolic debugger
Symbolic debugger "Help" file
Cross-reference program

Stand-alone version of compiler
Stand-alone version of linker

Header files defining library functions and
types - see volumes 2, 3, and 4

Also supplied are a few example source program (.C) files, and a program
CCHECK.PRG for checking the integrity of the supplied files. This can be
run (from the GEM Desktop or the Workbench) to verify that the programs
supplied are not damaged. If there are any special comments relating to the
software, for instance descriptions of extra files included on the disk, they
are placed in a file called READ.ME. If this file is present, consult it before
installing the software.

I

1

Section 1 - Introduction L7_

1.5.3 Installation on a hard disk

Installation on a hard disk does not present any special problem. The
following assumes that the hard disk is C:.

The Prospero C overlays and utility programs (the files supplied with an
extension .PRG, .TTP or .OVL) must all be contained in the same folder -
the name of this folder is a matter of personal preference, but the total path

name including the drive must be no more than 32 characters. Normally the
folder will be a single level in from the root, and be called something like
PROC.

Having created a new folder for these files, using the GEM Desktop Neiu
Folder command, the .PRG, .TTP and .OVL files from the issue disks
should be copied into it; the files PROBE.HLP and C.ERR should also be
copied.

The folder in which the Workbench looks for the libraries can be specified
independently of the overlays, so a separate folder can be set up to contain
them. It will usually be simpler to place them in the same folder as the
overlays.

The folder containing the header files can also be specified separately, but it
is normally best to keep them in a subdirectory called H within the folder
containing the overlays.

Source files will normally be kept in a separate folder - or several folders
according to their nature. The supplied source files can be placed in
whichever folder is most convenient.

The Workbench and its resource file may be placed in the same folder as the
overlays, or it can be placed in the root level of the disk - the latter allows
the Workbench to be installed so that double clicking on any .C file will
automatically open the Workbench and load the specified .C file into its
memory ready to edit.

1-8 Section 1 - Introduction

1.5.4 Installation on floppy disks

Floppy disk installation is more difficult, because the compiler files have to
be spread over several disks. With single sided disks of 360K capacity, there
is not room for the Workbench and all the overlay files on a single disk.
However, the Workbench itself does not need to be available once the
program has started up, so that the overlays can be placed on a separate disk.

The source files being compiled will normally be kept on a disk in drive B -
this disk will remain in the drive for the duration of the Workbench session,
unless a different set of source files are to be compiled. The disk in drive A
contains the Workbench overlays, and may have lo be changed occasionally
if there is not room for all overlays on one disk.

There are several ways of dividing the files to minimize the amount of disk
changing that is required - the best approach is largely a matter of personal
preference. Three possible schemes are outlined below :-

Scheme 1. Separate compiling and linking disks

The files required for compilation (CI.OVL, C2.0VL, C.ERR, and
optionally CXREF.1TP) are placed on one disk - the compiling disk. The
files required when linking or running a program (PROLINK.OVL,
CFIRST.BIN, CLIB.BIN, CGEM.BIN, LAST.3IN, and optionally
PROBE.PRG, PROBE.HLP and PROLIB.PRG) are placed on a second
disk - the linking disk. Source programs are kept on separate disks as
required, though the header files may be kept on the compiling disk. The
Workbench can be placed on the compiling disk if there is room, or on a
separate disk which is removed once the program has started.

This scheme requires a disk change between compiling and linking a file,
which is irritating for small files, where the compile-link-run cycle will be
quite rapid. However it is good for developing large (or very large)
programs, particularly those where a number of source segments are linked
into a single executable file.

Section 1 - Introduction L9

Scheme 2. Separate main and auxiliary disks

The files absolutely required for compilation and linking (CI.OVL,
C2.0VL, C.ERR, PROLINK.OVL, CFIRST*.BIN, CGEM.BIN,
CLIB*.BIN and LAST.BIN) are placed on a single disk -the main disk. A
second, auxiliary, disk contains the files required less frequently -
PROBE.PRG, PROBE.HLP, CXREF.TTP and PROLIB.PRG. Source
programs are kept on separate disks as before. The Workbench is placed on
a separate disk which is removed once the program has started - perhaps on
the auxiliary disk.

If two disk drives are available, this scheme requires no disk changes for
simple compile-link-run cycles, unless any of the auxiliary utility files are
required. However for single drive systems, linking will require some disk
swapping as the linker reads both the object file and the library files -
scheme 3, where these are all on the same disk, is preferable under such
circumstances.

Scheme 3. Libraries on source disk

The overlay files, which the Workbench expects to find in the same folder
(Cl.OVL, C2.0VL, C.ERR, PROLINK.OVL, CXREF.TTP, PROBE.PRG,
PROBE.HLP and optionally PROLIB.PRG) are placed on one disk - the
code disk. The libraries, which the Workbench can be instructed to search
for in a separate folder, are placed on a second disk together with the source
code being compiled. The Workbench can be placed with the overlays on the
code disk, or can be placed on a separate disk which is removed once the
program has started.

This scheme requires no disk changes at all on a twin drive system, and the
minimum on a single drive system, but requires copies of any libraries and
include files used to be placed on any disk containing source code to be
compiled.

If double sided floppies of capacity 720K are available, all overlays, utilities
and libraries and source can be accommodated on a single disk without
difficulty.

1.5.5 Installation on a RAM disk

Installation of the Workbench overlays on a RAM disk, if one is available,
gives a very significant improvement in the speed with which they can be
loaded, and therefore on compilation and linking speeds. Source files can
then be kept either on the RAM disk (and copied periodically to permanent
floppies) or on floppies as required. On a 1040 ST there is sufficient

1-10 Section 1 - Introduction

required overlays, with plenty of memory left for editing, compiling and
running sizeable programs. On a 520 ST a RAM disk is less practical,
though a small RAM disk can be used to hold the compiler workfiles to
speed up compilation.

1.5.6 Workbench configuration

When the Workbench starts up, it searches for its resource file, and for a
configuration file named C-BENCH.CFG. This file stores all the settings of
the Workbench options, including the instructions about where to locate the
compiler overlays and libraries. If the Workbench, all its overlays, and the
source files to be edited are in the same directory, the Workbench will
function without this configuration file - normally, however, a
configuration file of this name should be created the first time the
Workbench is used. This is done using commands from the Options menu
as follows.

The first step is to specify the directory pathnames where the overlays,
libraries and source files are to be found. Selecting Set driue/path names
from the Options menu produces the following form.

Set drive/path nanes

Path for compiler overlays :- A:\PR0C\J

Drive for workfiles :- B:

Path for user files :- B:\

Path for include files :- B:\

Path for Libraries :- A:\PR0C\

I Cancel | 1 OK I

The diagram shows the suggested values that should be entered for a floppy
disk installation following scheme 1 or 2 - note that the compiler overlays
and libraries are stored in a folder rather than the root in the example
above. For a hard disk system the entries might be as follows:

Compiler overlays
Workfiles

User files

Include files

Libraries

- C:\PROC\

-C:

- C:\SOURCES\

- C:\SOURCES\H\

- C:\PROC\

Section 1 - Introduction 1-11

Having selected an appropriate configuration, and clicked OK to put away
the form, the configuration can be saved. However, it may be preferable to
adjust a few of the other configurable options at this stage before saving
them - for example the tab width, the compiler options and the function key
settings. When the configuration is correct, selecting Saue configuration
from the Options menu presents the File Selector form to obtain the
configuration file name. Clicking OK or pressing Return or Enter without
altering the Directory or Selection fields will save the configuration to the
file C-BENCH.CFG in the folder where the resource file was found, ready
to be loaded automatically next time the Workbench is started. The
Workbench is now ready for use.

~7 1-12 Section 2 - Simple edit, compile and link

2 SIMPLE EDIT, COMPILE AND LINK

To prove that the software is installed and functioning correctly double click
on the icon marked C-BENCH.PRG. A blank screen appears with a white
menu bar at the top. Move the mouse so the point is over the word File.
This menu drops down:

Desk Block Find Conpile
Edit .C file
Edit other file

Save file

Save as ,•,
Delete File
Print

Write block to file
Read black fran file
Print black

Clase

Quit

BE

KD

AKW
AKR
AKP

KQ
•asagj^a-gsff-ssaas^^

* Section 2 - Simple edit, compile and link 1-13

Move the mouse down so that the words Edit .C file are highlighted in
reverse video. Click on the mouse button. The menu goes away and a form
like this appears:

ITEM SELECTOR

Directory:
B:\SOURCES*.C_.

e *,c

I BACKUP-
DOODLE..

GEMDEM0_

HANDEL-

PRIME

C__

C__

C„

C„

0

Selection:

L -~

OK

Cancel

This will show the program files that are in the diskette in drive B. The top
line, marked Directory:, shows the current directory path that the computer
is using, and the slider window below it the cuirent list of files in the folder.
You can select one of the files shown by double-clicking on it. Select
PRIME.C. A window will then open containing the text from the file. It
may then be edited. However since this is a demonstration file it can be
compiled straight away without any edits being required.

1-14 Section 2 - Simple edit, compile and link

To compile the source of this program from memory take the mouse pointer
into the menu bar at the top of the screen over the word Compile. A menu
will drop down:

Desk File Block Find HJIMIH Link Run Options
uiimnij u » — ^ Conpile PRIME

Check syntax

Conpiler options

KK

BY

BO

i i'i 11111 i-m

W* Repeatedly asks for]
|/# its snallest factor

^include <stdio,h>
^include <nath,h>

nain 0

{ unsigned int factor, naxfactor;
unsigned long int nunber;

do

{ do
printf ("\nlnput a nunber up to a thousand nillion:

Nhile (scanf ("Ziu",8nunber) < 1);
if (nunber > 0)

{ printf ("\nSnallest factor of Z51u is : ", nunber);
naxfactor = (unsigned int) sqrt ((double) nunber);

onDile and link I. KJ

Conpile other file
Cross reference

*/
*/

");

7^
'r«..«rri»^t«i««r-»ii«nTiwr,.ifi.»iiagB»i»inil.i«i«l»»ll»ll»mi»»liW«*i<i»li*i«iiH».<i.iii»i»^BiiililliiB

Note that the first line says Compile PRIME. Move the mouse so that the
pointer moves down the menu to the line Compile and link When the
pointer in on this line (and it is highlighted as above) click the left hand
mouse button.

A new form entitled Compiling B:\PRIME will appear:

Last Error :-
Compiling B:\PRIME

Line no :- Q

Abort |Continue I

!

Section 2 - Simple edit, compile and link 1-15

After a short pause while the compiler overlay is loaded, compilation will
begin. The line number at the top right of the form will go up, in
increments of twenty, while Pass 1 converts the source to an intermediate
file on disk. Assuming that no errors are encountered (there should be none,
unless the source of PRIME has been altered), Pass 2 will then load, and
produce a relocatable file PRIME.BIN. The next stage is to "link edit" this
file to produce an executable program. As the Compile and Link option
was selected, the Workbench immediately invokes the Linker, and the
following form appears:

Last Error :-
Linking B:\PRIME.PRG

Reading :- PRIME.BIN

Abort I Continue |

The file PRIME does not make use of the additional library CGEM.BIN, so
the object file name displayed after Reading :- in the top right should say
FIRST.BIN, PRIME.BIN, CLIB.BIN then LAST.BIN, then the same again
for the linker's second pass. No errors should be reported unless PRIME has
been modified. The result of linking is the file PRIME.PRG. in the same
folder as the source PRIME.C was loaded from. If you select the File menu
and click on Edit other file you will see three files whose name begin with
PRIME: the source PRIME.C, the executable program PRIME.PRG, and
also the relocatable version PRIME.BIN which is generated by the compiler
and read by the linker. If the compiler options G, L or N were specified,
other files might be generated - see section 4 for details.

To run the program PRIME.PRG select the Run menu :

Conpile Link CEE 1 Options
Run PRIME 1. KR i

8:\PRIhE.C Run other file
a nunberi and

, or Prine With connand tail
Run under GEM

Debug program MP

~7 1-16 Section 2 - Simple edit, compile and link

and click on Run PRIME. PRIME should be run without a command tail, not
under GEM - the menu should therefore appear as above.

Program PRIME reads from standard input and writes to standard output,
which are by default assigned to the screen. It repeatedly asks for a number
and prints the smallest factor (or else 'Prime'). The screen is cleared and a
first line of text appears:

Input an integer up to a thousand million :

Enter a suitable number:

999999989

The program continues:

Smallest factor of 999999989 is : 4327

Input an integer up to a thousand million : 999999937

Smallest factor of 999999937 is : Prime

and so on. (No computation takes longer than about a second.)

In addition to entering a zero, PRIME can be terminated by typing control-
C. In this case, the Workbench will resume immediately, and redraw its
window ready for further edits. If PRIME is terminated by entering zero,
the Workbench will display the message

Press any key to continue

Pressing any key will return to the Workbench ready for further editing.

The extra facilities of the editor, compiler and linker are explained in the
next three sections.

Section 3 - Operation of the Workbench 1-17

3 OPERATION OF THE WORKBENCH

Note: In the text of the following descriptions words that appear on
the screen during program operation are printed in this font.
Following an industry convention, Ais used to mean Ctrl or Control
and ♦ is used to mean Alt or Alternate. Control and Alternate are
second and third function shift keys: whereas the shift key is held
down, as on a conventional typewriter, to turn a lower case 'a' into an
upper case 'A', Control and Alternate are held down to turn 'V into
'Repeat Find' or 'x into 'Cut'.

The Workbench is designed to help you display and edit program source text
files, and to operate the compiler, linker and other utility programs provided
as part of this package.

The Workbench can be operated in four ways:

- by selecting commands from the menus which drop down when
the pointer is moved into the menu bar at the top of the screen.
This is usually done using the mouse.

- by using the function keys. No preset values are attached to these
keys but they may be set up to expand to any sequence of key
strokes, including control codes.

- by using the keyboard. The editor accepts the commands marked
on the keytops such as left arrow and Page Up, the commonly
accepted WordStar control key combinations such as AS, AD, AE,
AX, and a selection of Alt key combinations such as *X for cut,
♦ C for copy and ♦ V for paste. As a reminder these appear to the
right of corresponding menu commands.

- by using the mouse to place the cursor in the text, and to select
blocks of text. This is an alternative to using the cursor control
keys (left arrow etc.)

The editor is designed to be as familiar as possible to people who have had
programming experience using different editors on different machines. This
is an impossible ideal, since different editors work in mutually incompatible
ways. However, wherever possible we have provided several familiar ways
to do the same thing.

1-18 Section 3 - Operation of the Workbench

The Workbench is a normal GEM application, and uses menus, window
control points, dialog boxes and so on in the normal manner. Thus anyone
who is familiar with the operation of other GEM applications should
immediately find the control of the Workbench familiar. If you are not
familiar with other GEM applications, the most important concepts common
to all are described below.

The Workbench application is contained in the file C-BENCH.PRG - this is
a program designed to use the WIMP interface provided by GEM AES
(WIMP stands for 'Windows, Icons, Mouse and Pull-down menus'). A
companion file, called C-BENCH.RSC, contains descriptions of the menu
bar and various dialog boxes (described later) which the Workbench
uses; this is called the resource file, and must always be present if the
Workbench is to be successfully executed.

GEM applications are driven using the mouse, which can be moved around a
flat surface causing a pointer or other cursor to move around the screen (this
cursor is also frequently referred to as 'the mouse'). By moving the mouse
cursor about the screen, and clicking the mouse button, you can select items
from menus, select or move windows, answer questions, make choices and so
on. Throughout this manual the term click will refer to the left hand mouse
button being pressed then released - to 'click on' means to move the mouse
pointer over an object and then click the button. The mouse can also be used
to 'drag' - the mouse button is depressed and held down while the mouse
cursor is moved to another area of the screen. 'Double clicking' - clicking
twice in rapid succession - is also used by many applications, though not
extensively by the Workbench.

To run the Workbench you should double click on the program icon called
C-BENCH.PRG on the GEM desktop. The program will then load, and a
blank screen will appear with a white menu bar at the top with these words:

Desk File Block Find Compile Link Run Options

Each word in the menu bar corresponds to a group of items which can be
selected, and is known as a menu title. If the mouse is over a title in the
menu bar, a list of items pops down. An item from this list can be selected
by moving the mouse pointer to the appropriate line, then clicking the
button. Each available item on the menu (unavailable items are shown
dimmed) will be highlighted as the mouse is passed over it, to indicate which
item would be selected if the mouse was clicked at the time. To put the menu
away without selecting an item, the mouse can be clicked while it is not over
a highlighted item, or it can be moved over a different menu title in the
menu bar to cause that title's menu to appear.

Section 3 - Operation of the Workbench 1-19

Note that no normal operations can proceed while a menu is on the screen,
so that windows may not show what they should until the menu has been
removed. This is a limitation of the GEM operating system.

The second important feature of almost all GEM applications is the use of
windows. A window is a rectangular area of the screen which contains
information of some sort from the application - in the Workbench up to
four windows may be used, each containing the text of a different file. These
windows can overlap just like sheets of paper, so that not all of a window
may be visible at any given time. One window (the 'active' or 'current'
window) will be on top, and will not be obscured by any other windows. To
make a different window active, and bring it to the top, the mouse can be
clicked on any visible part of the window.

Close Box Move Box

Hi Title

Information Line

Work area of window

Left Arrow Horizontal Slider and Bar Right Arrow

Full Box

Up Arrow

_Vertical Slider
and Bar

Down Arrow

• Size Box

Around the edge of the window are a number of areas which can be clicked
on to alter the appearance of the window. These are shown in the diagram
above. Clicking in the close box in the top left had corner indicates that the
window is to be removed from the screen. The full box in the top right hand
corner will increase the window's size to occupy the entire screen (or shrink
it to its former size if it is already full size). The position of the window can
be moved by pressing the mouse button over the title bar and dragging it to a
new position, while the size and shape can be altered by dragging the size
box in the bottom right hand corner.

1-20 Section 3 - Operation ofthe Workbench

The remaining control areas affect the window's contents rather that its
screen position. The sliders indicate what portion of the total information is
currently displayed - by dragging them to a new position a different part of
the information can be viewed. To move in smaller steps (a page at a time),
clicking in the area of the slider bar above or below (or for the horizontal
slider, to the right or left of) the slider causes the window contents to be
scrolled in the appropriate direction. To scroll in still smaller steps, the
appropriate arrow can be clicked.

A third important concept in GEM applications is the dialog box - these are
GEM's way of prompting a user for information. A simple dialog box,
typically requiring a yes/no response, is called an alert, while a more
complicated one requiring various pieces of information is often referred to
as a form, as it behaves rather like a paper form to be filled in. Most GEM
applications will have a number of different forms which can appear when
information is required, but all will be driven in the same way. One
particular form which is used extensively by most applications (including the
Workbench) is the File Selector form, and will serve as an example of the
features of other forms.

When an application wants to obtain the name of a file from the user, either
to read from or write to, it uses the File Selector form. This is drawn in the
middle of the screen, obscuring what was there before, and looks
approximately as shown in the diagram - the precise appearance varies
between versions of GEM.

In the bottom right hand corner are two boxes containing the words OK and
Cancel respectively. These are known as buttons, and are 'pushed' by
clicking on them with the mouse. The OK button is drawn with a thick black
border - this indicates that it is the default button, and that Return or Enter
can be pressed as an alternative to clicking on the button. The Cancel button
has a slightly thickened border, indicating that it is an exit button - in other
words, clicking on it indicates that you have finished with the form. Buttons
with a thin border (there are none on this form) indicate an option to be
selected - when selected, the button is displayed highlighted. Sometimes
selecting one button will cause others to become unselected - these are
known as radio buttons because they behave like waveband buttons on
traditional radios.

Section 3 - Operation of the Workbench

ITEM SELECTOR

Directory:
B:\SfJllRCES\#.C

(T< ¥ r IllillPillllill:! Selection:

HANDEL™. CL
B BACKUP

D00DLE__.C__
GEMDEM0_.C__

0

1 MANDEL__.C__ 1
PRIME C__

1 OK 1

Cancel

1-21

The File Selector form contains two 'editable text fields' where text can be
entered by the user. Only one of these contains a cursor (a vertical bar) - if
characters are typed they will appear at this point. Unused character
positions are marked with underscores. The cursor can be moved to the left
or right using the cursor keys, and backspace and delete can be used to edit
the text. The escape key clears the current text. To move the cursor to a
different text field, the up or down cursor keys or tab or backtab as
appropriate can be used. Alternatively, an editable text field can be made
current by clicking on it with the mouse.

The two fields in the File Selector box are labeled Selection: and

Directory: -these indicate the filename and path specifier of the selected
file respectively. The directory specifier also indicates a wildcard specifier
such as '*.C, indicating that only files with the given extension are to be
displayed in the list of available files. To select a file and pathname, you
could type in the required name and path in these two text fields. However,
the File Selector form is slightly different from other forms in that it allows
these fields to be filled in by clicking in the directory listing box in the lower
left hand corner. Any files in the directory indicated by the Directory field
which match the given wildcard specifier are listed in this box, and clicking
on a filename will fill in the Selection field automatically. If the directory
contains any sub-directories, these will be listed too, with a mark beside
them to distinguish them from the filenames, and clicking on one of these
will update the Directory field so that the contents of the sub-directory is

1-22 Section 3 - Operation of the Workbench

displayed. To close a directory and return to the parent, the close box in the
top left hand corner of the directory listing should be clicked. In GEM
version 2.0, closing the root directory gives a list of the available drives to
be selected. In earlier versions, the root cannot be closed, and the only way
to change to a different drive is by editing the contents of the Directory
editable text field. Note that any alterations to this field made by typing do
not take effect until you click in the the directory listing box - in the title
bar is best.

To select an existing file, you should obtain the listing of the appropriate
directory, scroll it using the arrows or slider bar until the required file is
visible, then click on the filename. To select a new filename, the appropriate
directory should be selected as before, then the filename typed into the
Selection field. The list of files can still be of use, to make sure that the
filename you are about to select is not already taken.

Once the Directory and Selection fields are correct, the OK button is
clicked to confirm the choice. Return or enter may be typed as an
alternative. Clicking Cancel indicates that you do not want to proceed with
the operation, and it will be aborted. As a short cut, double-clicking on a
filename in the directory listing has the same effect as clicking on it then
clicking OK.

Section 3 - Operation of the Workbench 1-23

3.1 The Workbench menus

Throughout operation of the Workbench a menu bar is displayed across the
top of the screen, from which menu items can be selected in the usual GEM
manner as described above. The items are divided into 8 groups according to
their function, described in the following sections.

3.1.1 Desk menu

The Desk menu provides access to GEM Desk Accessories such as calculator
and clock programs which the user may wish to install. The first line of the
Desk menu, About C-BENCH ..., provides the Prospero C copyright notice:

Prospero C Workbench version ring 1.1
Copyright (C) 1388 Prospero Software

I—5k—I

Note that under GEM 2.0 this menu title is moved to the right hand side of
the menu bar, and its text changed to reflect the name of the current
application. Thus it will be called C-BENCH, but will be the same in all other
respects.

~7 1-24 Section 3 - Operation of the Workbench

3.1.2 File menu

IJIF1 Block Find Conpile

I Edit .C file
Edit other file

Si:

Save file

Save as ,..

Delete File

Print

KD

Mrite block to file AKW
Read block fron file AKR
Print block AKP

Close

Quit m

This menu contains commands for loading and saving files to be edited, and
associated functions. It also contains the Quit command for ending a
Workbench session.

3.1.2.1 Edit .C file

Edit .C file is used to open a window in which to edit a program source file
(with a .C extension). Clicking on this option produces a GEM File Selector
form as described above. Having selected the required file name and
directory, click OK to confirm the choice. If the specified file already exists,
the source will be loaded from disk into a window to be examined or edited

as required. If the file does not exist, an alert asks you to confirm that you
wanted to create a new file - if you click OK or type Return or Enter, an
empty window is opened into which the new text can be typed.

Clicking on Cancel at any stage aborts the entire operation. Note that »E
can be used as an alternative to selecting this item.

3.1.2.2 Edit other file

Edit other file works in the same way as Edit .C file, except that no default
extension of .C is assumed, and none is applied to file names with no
extension. It is intended for use in editing ASCII files which are not C
program files, or for editing header (.11) files.

I

Section 3 - Operation of the Workbench 1-25

3.1.2.3 Save file

Saue file records the text in the current top window on disk. II (he words
Saue file are dimmed (as in the diagram above) the file on disk is the same
as the file in memory and there is no need to save, or there are no windows
open to save. Note that »S can be used as an alternative to selecting this item.

3.1.2.4 Save as ...

Saue as... works in the same way as Saue file, except that it presents the
File Selector form (see above) to allow the name of the file to be specified.
If the name chosen is that of a file which already exists, an alert box is
presented for confirmation that the current file on disk is to be replaced.
Clicking on Cancel at any stage aborts the operation. This is dimmed and
unavailable (as above) if no windows are open.

3.1.2.5 Delete file

Clicking on Delete file presents the File Selector form (see above) to allow
the name of a file on the disk to be selected for deletion. An alert box is

presented to allow you to confirm that deletion is required. Clicking on
Cancel at any stage aborts the operation. Note that *D can be used as an
alternative to selecting this item.

3.1.2.6 Print

Print is used to print out the current top window to the printer. If only part
of it is wanted, then Print block (3.1.2.9) may be used.

3.1.2.7 Write block to file

LUrite block is used to place a selected block of text from the top window
onto the disk in a file whose name is chosen using the File Selector. If the
specified file exists, an alert is presented to confirm that it is to be
overwritten. Clicking on Cancel at any stage aborts the operation.

LUrite block is only available when text is selected (see section 3.1.3 for
selection methods) and is otherwise dimmed, as above. The WordStar
command AKW can be used as an alternative to selecting this item.

* 1-26 Section 3 - Operation of the Workbench

3.1.2.8 Read block from file

Read block is used to read a block of text from a file on disk and insert it

into the current top window. The text file is chosen using the File Selector
form, and the whole of the text from the file is inserted into the top window
at the current cursor position. Clicking on Cancel in the File Selector aborts
the operation. This item is dimmed and unavailable (as above) if no windows
are open. The WordStar command AKR can be used as an alternative to
selecting this item.

3.1.2.9 Print block

Print block is used to print a selected block of text from the top window.
This item is only available when text is selected (see section 3.1.3 for
selection methods) and is otherwise dimmed, as above. The WordStar
command AKP can be used as an alternative to selecting this item.

3.1.2.10 Close

Close is used to close the current top window. If the text in it has not been
saved, an alert box first offers the chance to save it. Click Ves or type
Return or Enter to save the text before closing the window. Clicking Cancel
will abort the close operation, while clicking No will close the window and
discard any changes made to the text since it was last written to disk. This
item is dimmed and unavailable (as above) if no windows are open.

The same effect can be achieved by clicking on the close box in the top left
hand corner of the window, or by typing «W.

3.1.2.11 Quit

Quit stops execution of the Workbench program and returns you to the
GEM Desktop. An alert box offers the chance to save any unsaved files
before closure. Note that *Q can be used as an alternative to selecting this
item.

Section 3 - Operation of the Workbench

3.1.3 Block menu

nCHanVFind Conpile Link

Mark start of biock AKB
Mark end of block ARK

Copy block KC AKC
Cut block MX AKX
Paste block ffiV aku

Delete block AKY
Unnark block KH AKH

1-27

The Block menu is concerned with operations affecting blocks of text. A
block of text may be any amount of continuous text which is highlighted on
the screen by being shown in reverse video and which is to be the subject of
a further operation - so a block of text can be marked for cutting, copying,
deleting, or writing to disk. There are four ways to mark text :

- by using the Mark start and Mark end commands in this menu.

- by dragging the mouse across the required text, with the mouse
button depressed. Double click may also be used to select a single
word. Note that that the block and the cursor are separate distinct
things. When dragging, the text cursor is left at the last end of the
drag, either start or end depending on the direction of drag, and so
is difficult to see. When double clicking to select a word, the text
cursor is left where it would be with a single click, just under the
arrow.

- by using the WordStar block commands AKB (Mark start) and AKK
(Mark end). These are provided for people who use them naturally;
the other WordStar block commands AKV (Paste). AKX (Cut). AKC
(Copy), AKY (Delete), AKH (Hide), AKR (Read Block) and AKW
(Write Block) also work. However for people who have not
previously used WordStar they are not the easiest commands to
learn.

- the subject of a Find operation (see section 3.1.4) will be selected
when found.

None of the commands in this menu are available unless a window is open.

1-28 Section 3 - Operation of the Workbench

3.1.3.1 Mark start of block

Mark start makes the current text cursor position the start of the block.
The block start and block end are maintained independently, and can be
moved independently - the block is defined only if both start and end arc
defined and the block start precedes the block end. Moving the block start
may therefore cause the block to become defined or undefined according to
the block end position. If a block is defined, it is displayed in reverse video.
This item is dimmed and unavailable if no windows are open.

The WordStar command AKB can be used as an alternative to selecting this
item.

3.1.3.2 Mark end of block

Mark end makes the current text cursor position the end of the block. If
this is after the current block start, a block will be defined. If it is before the
current block start, or the block start has not been defined, the block will be
undefined, and the block operations will not be available. This item is
dimmed and unavailable if no windows are open.

The WordStar command AKK can be used as an alternative to selecting this
item.

3.1.3.3 Copy block

Copy block places a copy of the marked text in an internal buffer. If this
buffer contains text, the Paste block item in this menu is undimmed, and
can be used to insert the buffer contents into the text at the cursor position.
Delete block (3.1.3.6) and UJrite block to file (3.1.2.6) do not affect the
contents of this internal buffer. This item is dimmed and unavailable unless a
valid block is marked in the top window.

The WordStar command AKC or the Alt key command *C can be used as
alternatives to selecting this item.

3.1.3.4 Cut block

Cut block works in the same way as Copy block except that it deletes the
marked text after copying it to the internal buffer. This item is dimmed and
unavailable unless a valid block is marked in the top window.

The WordStar command AKX or the Alt key command *X can be used as
alternatives to selecting this item.

I

I

I

Section 3 - Operation of the Workbench 1-29

3.1.3.5 Paste block

I'uste block inserts the contents "I Ihe internal bulici cieatcd by Copy
block or Cut block at the current text cursor position. It is not affected by
the current marked block, and is only available if text has previously been
placed in the internal buffer using Copy block or Cut block. The buffer is
not emptied, so that a single cut followed by several pastes can be used to
make multiple copies of a section of text.

The WordStar command AKV or the Alt key command *V can be used as
alternatives to selecting this item.

3.1.3.6 Delete block

Delete block removes the current marked block of text. There is no way to
retrieve this text, so it may be better practise to use Cut block to delete text
as it can then be retrieved if necessary. The text is then unmarked. This item
is dimmed and unavailable unless a valid block is marked in the top window.

The WordStar command AKY can be used as an alternative to selecting this
item.

3.1.3.7 Unmark block

Unmark block removes the highlight from the current marked block, and
clears the start and end block markers.

The WordStar command AKH or the Alt key command ♦!! can be used as
alternatives to selecting this item.

1-30

3.1.4 Find menu

HTFPIL Conpile Link Run
Find "
Find and replace
Repeat find

MF

BR"

AQF
AQfl
AL

Start of text
End of text
Start of block
End of block

AQR
AQC
ADB
AQK

Goto line nunber KG

Section 3 - Operation of the Workbench

The Find menu is concerned with locating text, block markers and line
numbers within the text in the current top window. The text cursor is
positioned before whatever is found. The following WordStar and Alt key
commands also perform find functions :

WordStar Alt key
'QF ♦ F

"QA ♦ A

AL

"QR
AQC
'QB
^K

♦ G

Command

Find

Find and replace
Repeat find
Find start of text

Find end of text

Find start of block

Find end of block

Goto line number

None of the commands in this menu are available unless a window isopen.

3.1.4.1 Find

Find is a sophisticated search function. It will search forwards or backwards
from the current cursor position, or forwards from the start of a text file,
for a string of characters up to 32 characters long, optionally ignoring their
case. The search process is rapid, due in part to the fact that searches are not
made across line barriers, and leading spaces at the start of each line are
ignored.

Section 3 - Operation of the Workbench 1-31

The dialog box shown below is produced, so that the relevant search string
and options can be entered. The options are selected using two sets of radio
buttons. When the options have been set, clicking OK will start the search. II
the specified string is found, it will be selected as the current block, and the
cursor will be positioned at the start of it. Repeat find can then be used to
find the next occurrence, searching forwards or backwards as appropriate. If
the text is not found, an alert is displayed and the cursor remains where it
was.

Find string

Direction

Match

FIND

:- forn alert}_

mniBiForwards Backwards!

Exact MM-JM4I

Cancel 1 OK |

The WordStar command AQF or the Alt key command »F can be used as
alternatives to selecting this item.

3.1.4.2 Find and replace

Find and replace is similar to the Find string function, but allows the text
if found to be replaced selectively with another text. The function can
replace a single occurrence then stop; it can go through each occurrence,
prompting the user whether it should be replaced; or it can replace all
occurrences without any further intervention. This last feature should be
used with caution, as there is no way to undo all these changes (except the
hard way - one by one).

~7 1-32 Section 3 - Operation of the Workbench

A dialog box like the one below is used to contain the two strings of text and
the various options :

Find string

Replace with

Direction

Match

Replace

FIND 8 REPLACE

:- check nane

:- check file nane|_

•lliMiliia 1Backwards Global

B4!M4JI |Caseless |

mamOne Sone

Cancel 1 OK 1

Once the required text strings and options have been entered, clicking OK
starts the replace function, while clicking Cancel will abort the process. If
the Some option was selected, each occurrence in turn is highlighted, and a
dialog appears to confirm the replacement as follows :

Replace ? Ves No Stop

Clicking Yes or typing Return or Enter causes the highlighted text to be
replaced, and then the next occurrence found; clicking No skips to the next
occurrence without replacing; while clicking Stop aborts the replace
operation at that point.

The WordStar command AQA or the Alt key command ♦ A can be used as an
alternative way to select this item.

Section 3 - Operation ofthe Workbench 1-33

3.1.4.3 Repeat find

Repeat tind repeats the previous Find or Find and replace command,
without prompting for new search strings or options. If you wish to quickly
skip through all the occurrences of a certain letter or word, it is much easier
to use the equivalent WordStar command AL than to repeatedly select the
menu item. Each time you press AL or select Repeat find will find or
replace the next occurrence. This command is only available if a find or
replace command has been performed.

3.1.4.4 Start of text

Start of te«t moves the text cursor to the start of the text in the current top
window.

The WordStar command AQR can be used as an alternative to selecting this
item, as can the key combination control-home if a key marked 'home' is
available.

3.1.4.5 End of text

End of tent moves the text cursor to the end of the text in the current top
window.

The WordStar command AQC can be used as an alternative to selecting this
item, as can the key combination control-end if a key marked 'end' is
available.

3.1.4.6 Start of block

Start of block move the cursor the the start of the current marked block in
the top window. If the block start is not defined this command is dimmed
and unavailable.

The WordStar command AQB can be used as an alternative to selecting this
item.

3.1.4.7 End of block

End of block move the cursor the the end of the current marked block in
the top window. If the block end is not defined this command is dimmed and
unavailable.

The WordStar command ^K can be used as an alternative to selecting this
item.

1-34 Section 3 - Operation of the Workbench

3.1.4.8 Goto line number

Goto line nunber :- 1B50|_

Cancel |I OK I

Goto line number is useful when using error reports that refer to the line
number in the source file, or simply to find out how many lines there are in
a file. A form is produced as above, asking for the required line number. If
you select OK, the cursor will be placed at the start of the appropriate line
(provided that there are sufficient lines in the text). The default value is the
current line number, so that this command can be used to discover the
current line number without altering it.

The Alt key command »G can be used as an alternative to selecting this item.

Section 3 - Operation of the Workbench

3.1.5 Compile menu

MfllilUniLink Run Option
Conpile KK
Conpile and link [«]J
Check syntax £Y

Conpiler options ... MO

Conpile other file
Cross reference

1-35

The Compile menu is used to control the compilation of C source programs.
The menu is divided into three sections.

3.1.5.1 Compile from memory

The first section of the menu contains commands which operate on the
current top window, and are only available when a window is open :

Compile runs the Prospero C compiler. If text is available to compile, the
menu changes to give the name of the source which would be compiled if
this option was selected (the diagram above shows the menu when no text is
available).The source is compiled directly from memory, to produce an
object file with a .BIN extension on disk. See section 4 for more details on
compiler operation. Note that *K can be used as an alternative to selecting
this item.

Compile and link is equivalent to Compile, except that if the compilation is
successfully completed it will then go on to link. See section 3.1.6 for more
details on linking. Note that »J can be used as an alternative to selecting this
item.

Check syntaw uses the Prospero C compiler to check the source in the
current top window, without producing an object file. This considerably
speeds up the process, and is useful for finding errors when it is likely that
some exist. Note that *Y (or *Z on German keyboards) can be used as an
alternative to selecting this item.

~7 1-36 Section 3 - Operation of the Workbench

3.1.5.2 Compiler options

The second section of the menu is used to set the compiler options. This is
done using the following form :

D
L
H

1
S
u
c

Conpiler Options

Conpiler output to LOG file
Source listing to PRN file
Include source line infornation
Check array indexes
Check assignnents against bounds
Check pointers
Accept strict ANSI Standard C only
Char is unsigned
Generate conpact code

CI Wait after errors
V Autosave after conpilation

Cancel 1 OK

Options which are selected are shown with a highlighted letter; they remain
selected until next altered, and if the Saue configuration facility in the
Options menu is used (see 3.1.8.1), they will still be selected next time work
is resumed. The significance of each option is described in section 4.

3.1.5.3 Compile from disk

The final section of the compile menu is for operations on disk files:
Compile other file is used to compile a source file from the disk. In this
case the File Selector form is presented and the user is invited to select any
.C file for compilation. In other ways the operation is the same as for the
Compile option. Cross reference is used to generate a cross-reference
listing of any source file on the disk, selected using the File Selector form.
The operation of the cross-reference generator is described further in
section 9.

I

Section 3 - Operation of the Workbench

3.1.6 Link menu

HfflUlRun Options

nn

With snail libraries

With CGEM
Using control file

Link other file

1-37

The Link menu is used to control the linking of the object programs
produced by the compiler.

Link runs PROLINK, the Prospero linker. If text is available to compile, the
menu changes to give the name of the source file (the diagram above shows
the menu when no text is available). If this source has been successfully
compiled since its last edit, the corresponding .BIN file on disk will be
linked using the options specified using the rest of this menu, otherwise the
command will be dimmed and unavailable. See section 5 for more details on

linker operation. Note that »L can be used to select this item.

The LUith small libraries, LUith CGEM and Using control file options are
used to set the linker options. Options which are selected are shown with a
check mark; they remain in force until next altered, and can be saved using
the Saue configuration facility in the Options menu (see 3.1.8.1). The
significance of each option is described in detail in section 5.

The Link other file command is used to link any other object file on disk.
The file selector form is presented and the user is invited to select any .BIN
file from the disk for linking. In other ways the operation is the same as for
Link.

7 1-38
3.1.7 Run menu

I Mill Options
a Run*
Run other file

With connand tail
Run under GEM

Debug progran KP

Section 3 - Operation of the Workbench

The Run menu provides the means to execute other programs or GEM
applications without quitting from the Workbench. Typically this will be the
program just compiled and linked, but any other .PRG, .TOS or .TTP file
on the disk can be executed. The Workbench program remains in memory
and will continue normally after termination of the specified program.

3.1.7.1 Run

If text is available for compilation in the top window, this menu item
changes to give the name of the source file. Provided that the text has been
successfully compiled and linked since its last edit, selecting this item
provides a quick way to run the resulting program, otherwise it will be
dimmed and unavailable.

The Alt key command ♦ R can be used instead of selecting this item.

3.1.7.2 Run other file

Run other file presents the file selector form from which any executable
file can be chosen. The default extension is .PRG - however it is possible to
edit the file specification in the path field, or simply type in a filename with
a .TTP or .TOS extension, in order to execute files of other type. If the
selected file has a .PRG extension, it will be run using the options specified
below. .TTP and .TOS programs are run as if Run under GEM was not
selected, respectively with and without a command tail, as from the GEM
Desktop.

3.1.7.3 With command tail

With command tail allows the user to indicate whether a command tail is
to be passed to programs executed using the Run or Run other file
commands. If selected, a check mark is displayed in the menu, and a dialog is
presented to allow the command tail to be entered whenever a program is to
be run - the diagram overleaf shows the command tail 'myfile.dat
myf ile .out' being entered ready to be passed to a program :-

Section 3 - Operation of the Workbench 1-39

3.1.7.4 Run under GEM

Run under GEM allows the user to indicate whether programs executed
using the Run or Run other file commands are to run as GEM applications
or not. If selected, a check mark is displayed in the menu, and the screen will
be left in graphics mode when the program is executed. If not selected, the
screen is cleared before running the program, and the Workbench will wait
for a keystroke after termination of the program before redrawing its
windows, menu bar etc.

3.1.7.5 Debug program

Debug program is used to run PROBE, the symbolic debugger. In order to
be debugged, a program must have had the N option (Include source line
information) and preferably the L option (Source listing to PRN file) set
when it was compiled. See section 8 for more details on how to operate
PROBE.

The Alt key combination *P can be used as an alternative to selecting this
item.

~7 1-40
3.1.8 Options menu

HEgEEai
Save configuration
Restore configuration
Set drive/path nanes
Set function keys

Tab width 8
7 Auto indent

Insert node ^

Section 3 - Operation of the Workbench

The commands in the Options menu are concerned with various aspects of
the Workbench configuration, so that it can be tailored more precisely to the
individual user's requirements.

3.1.8.1 Save configuration

The Saue configuration facility records the current settings of the various
Workbench options in a disk file, so that they can be reloaded when the
Workbench is next used. The file selector form is used to select the directory
and name of the file in which the configuration is to be saved - if OK is
clicked without altering the Directory or Selection fields, the file C-
BENCH.CFG will be used in the same folder as the resource file was found
in. The Workbench searches for a file of this name when it starts up. and
automatically loads its options from it if found. It is also possible to specify a
different filename, so that several sets of options can be saved ready for use
in different circumstances - for example different function keys might be
defined when editing different programs, or when different people are using
the editor.

3.1.8.2 Restore configuration

The Restore configuration facility sets the various Workbench options
from those stored in a disk file. The file selector form is used to allow you
to select the directory and name of the .CFG file from which the
configuration is to be restored. The options in C-BENCH.CFG will be
loaded when the Workbench starts, as described above, but this command
may be useful if other configurations have been saved for different
circumstances.

Section 3 - Operation of the Workbench 1-41

3.1.8.3 Set drive/path name;

Set drive/path nanes

Path for compiler overlays - A \PR0C\J_

Drive for uorkfiles - B

Path for user files - B \

Path for include files - B \

Path for Libraries - A \PR0C\

ICancel | 1 OK |

The Set driue/path names command is used to specify the drives and
directories in which the editor looks for the compiler and linker overlays
and libraries, where the compiler places its workfiles and looks for include
files whose path is not fully specified, and the default path where the
Workbench looks for source files when using the file selector. The path used
for user files is automatically altered whenever it is changed in a file selector
form. These pathnames are saved in the configuration file when Saue
configuration is used (see 3.1.8.1).

1-42 Section 3 - Operation of the Workbench

3.1.8.4 Set function keys

Set Function key sequences

Fl stn ng

F2 stning

F3 stn ng

F4 stri ng

F5 striing

F6 striing
F7 stri ng

F8 striing

F9 string
FIB str•ing

^include <stdio,h>

Hdefine

printf ("
for (JJ)
if (altered) do.altered.

13 8
I3KK8
Prospero Software
Prospero Software
Prospero Software

Cancel I OK

This command can be used to define the key sequences produced when one
of the function keys is pressed. Each function key has a corresponding string
of up to 32 characters, defined using this command, so that pressing the
function key has the same effect as that sequence of characters. There are
several ways in which the function keys can be usefully defined - for
example, if typing in a C program, it might be useful to define Fl as
producing the keys int, F2 producing char * and so on. As another example,
if you are used to an editor where pressing F3 meant 'find', then F3 could be
defined to produce the keys AQF - the WordStar find command. Placing
control keys in the function key sequences is particularly useful - for
example the sequence AQSAGAGAX will move the cursor to the start of the
line, delete the first two characters, then move down to the next line. If a
function key is defined to produce that sequence, pressing it repeatedly will
cause a group of lines to be moved left two characters.

When entering control characters into editable text fields, the characters
displayed will be strange symbols, as in the diagram above, but the effect
when the function key is pressed will be that of the corresponding control
code. It is not possible to enter some keys into function key sequences - for
example the cursor keys, tab, Return, Enter and Alt key combinations. The
WordStar equivalents are particularly useful here - note also that AM and AI
can be entered into function key strings to mean Return and tab respectively.

Section 3 - Operation of the Workbench

3.1.8.5 Tab width

New tab width :- 8J

Cancel 1 I OK I

1-43

The Tab ujidth command is used to specify the width in characters of the
tab stops. When the tab key is pressed, it inserts spaces at the current cursor
position until the cursor column is a multiple of this tab width. The tab width
selected must be between 1 and 9, and the text of this menu item alters to
indicate the selection. Alternatively, a tab width of zero can be requested -
this selects 'Special tabs', intended where information needs to be entered
in columnar fashion. Pressing the tab key will repeatedly insert spaces at the
current cursor position until the cursor lies below the start of the next word
(i.e. a non-space character immediately preceded by a space) on the line
above.

3.1.8.6 Auto indent

When Ruto indent mode is selected, indicated by a check mark placed next
to this menu item, pressing return will cause the same number of spaces to
be entered at the start of the new line as there are at the start of the line
above. This is frequently useful when entering C source, as the required
indentation is usually the same as or close to that of the line above. If flu to
indent mode is already in use, selecting this item will turn it off.

3.1.8.7 Insert mode/Overwrite mode

If this menu item reads 'Insert mode', characters typed will be inserted
into the text without replacing those already there. If it reads 'Oueruirite
mode', characters typed will replace those already in the text. Selecting this
item toggles the state between Insert mode and Ouerwrite mode, and
alters the menu text accordingly. The WordStar command AV and the key
marked 'Ins' or 'Insert' have the same effect as selecting this menu item.

1-44 Section 3 - Operation ofthe Workbench

3.2 Workbench key combinations

'Hie Workbench is designed lo be familiar to as many people as possible, so
that, in most cases, pressing a particular key will do what they would expect
it to. To this end, the majority of WordStar control key combinations arc
supported, and have the same effect in the Workbench as they do in
WordStar. The Alt key combinations used as a short cut to select menu items
are based on the Macintosh command key combinations. Also, any special
keys on the keyboard, such as the cursor keys, Home, and Insert are
supported.

3.2.1 WordStar style control key combinations

Three types of WordStar type key sequences are supported - the simple
commands, which are obtained by holding down the control key while typing
a letter, the control-Q commands, which are obtained by typing control-Q
followed by a second key to indicate which command is required, and the
control-K commands, which are obtained similarly to the control-Q
commands, except that they are prefaced by control-K.

The simple commands are organized around the diamond formed by the keys
E, S, D, and X - these are the basic cursor movement keys in WordStar,
conveniently close to the control key. Slightly further out from the centre of .
the diamond are keys which move the cursor further - thus A and F move a
word at a time, R and C a page at a time. Various other keys further to the
right of the keyboard perform sundry other commands. The complete list is
as follows :

AE Cursor up
AS Cursor left

AD Cursor right
AX Cursor down

AA Word left

AF Word right
AR Page up
AC Page down
AW Scroll window up (without moving cursor)
AZ Scroll window down

AV Enter or leave insert mode

AG Delete character to right of cursor •
TT Delete character to left of cursor (same as backspace key)
AI Tab

AL Repeat find
AM New line (same as return key)
AY Delete line '
AN Insert line
AT Delete word

I

I

I

I

Section 3- Operation of the Workbench 1-45
The control-Q combinations are concerned with find operations, or moving
the cursor to specific points. Typing AQ before one of the simple cursor
commands makes the cursor go further. Thus AS moves the cursor left one
space, ^S moves the cursor left to the start of Ihc line. There is a similar
logic behind most of the other commands in this group (except ^QY, which
is a bit of an odd man out, and AQB and AQK, which mirror the AKB and
AKK commands described later). The complete list is as follows :

*QE Start of page
vs Start of line

X}D End of line

^X End of page
'QR Start of document

AQC End of document

"QY Delete to end of line

^A Replace
^F Find

'O-B Start of block

'QK End of block

The control-K combinations are concerned with block operations. The
WordStar block mechanism is slightly different to the Workbench one, but
the following commands have an analogous effect in the Workbench to their
original WordStar function :

AKB Mark block start

AKK Mark block end

AKX Cut block (to clipboard)
AKC Copy block (to clipboard)
AKV Paste block (from clipboard)
AKY Delete block

AKH Hide block

AKW Write block to disk

AKR Read block from disk

AKP Print block

1-46 Section 3 - Operation of the Workbench
3.2.2 Alt key combinations

Many of the more common menu selections can, as a short cut, be made by
holding down the Alt key and typing a letter - frequently the first letter of
the menu command. These key combinations are based on the standard (and
semi-standard) Macintosh command key combinations. The following Alt
key combinations are supported :

♦E Edit .C file

♦ S Saue file

♦ D Delete file

♦ W Close

♦Q Quit

♦c Copy block

♦ X Cut block

♦ V Paste block

♦ H Unmark block

♦ F Find

♦ A Find and replace

♦ G Goto line number

♦K Compile

♦ J Compile and link

♦ Y Check simian{*Z

♦ O Compiler options ..

♦ L Link

♦ R Run

♦ P Debug program

7 Section 3- Operation of the Workbench 1-47
3.2.3 Special key combinations

The standard ST keyboard has a number of special keys, marked with
various editing functions such as home, insert, delete and so on, as well as
the cursor keys. These keys should all work as expected. If control is held
down while pressing one of these keys, the effect is modified, in much the
same way as the control-Q combination modifies the WordStar cursor
control codes. The following special keys are supported :

Left arrow Cursor left
Right arrow Cursor right
Up arrow Cursor up
Down arrow Cursor down
Home Start of window
Insert Enter or leave insert mode
Delete Delete character to right of cursor

When typed with the control key held down, the meanings are modified as
follows :

ALeft arrow Start of line
ARight arrow End of line
AHome Start of text

In addition, the function keys are supported, each expanding to a sequence of
characters which can be specified using the Set function keys menu
command - see section 3.1.8.4.

1-48 Section 4 - Operation of the compiler

OPERATION OF THE COMPILER

Desk Flic Block Find MtM.MIH Link Run Options
Conpile PRIME

Check syntax

Conpiler options

MK

MO

V* Repeatedly asks for
I* its snallest factor

^include <stdio,h>
^include <nath.h>

main 0

{ unsigned int factor, naxfactor;
unsigned long int nunber;

do
{ do

printf ("\nlnput a nunber up to a thousand nil 1ion: ");
while (scanf ("Zlu",8nunber) < i);
if (nunber > B)
{ printf ("NnSnallest factor of *51u is : ", nunber);

naxfactor = (unsigned int) sqrt ((double) nunber);

Conpile and link I. KJ

Conpile other file
Cross reference

:i|M«' !-!U:j i:'

*/

*/

BBPiPffRBBWlMffB^^

An invocation of the Prospero C compiler processes one source file,
containing a C translation unit, and converts this into a binary output file
consisting of a single module in relocatable format. The source file can be
any ASCII text file stored on disk, or can be contained in memory in the
Workbench.

Compilation is a 2-pass process under the overall control of the Workbench.
Pass 1 (the program CI.OVL) reads the source file and generates a
temporary work file, with the name PTEM$IL2.$$$, which contains a semi
compiled "intermediate-language" representation of the source program.
When processing by Pass 1 is complete, the Workbench gives control to Pass
2 of the compiler, the program C2.0VL. This program reads the work file,
and generates the relocatable .BIN file. When compilation is complete, Pass
2 deletes the work file and gives control back to the Workbench.

It should be noted that the current default folder, in which the .BIN file (and
possibly the .LOG and .PRN files) will be produced, will be the folder from
which the source was loaded. Ifa path for include files has been specified
(see 3.1.8.3), this will be added to the start of any include file name which
does not begin with a drive specifier or backslash before attempting to open
the file.

Section 4 - Operation of the compiler 1-49

4.1 Compile-time options

The compile-time options are selected using the following form, which is
produced when the Compiler options ... command is selected :

L
H

I
S
U

c

Conpiler Options

Conpiler output to LOG file
Source listing to PRN file
Include source line infornation
Check array indexes
Check assignnents against bounds
Check pointers
Accept strict ANSI Standard C only
Char is unsigned
Generate conpact code

H Wait after errors
V Autosave after conpilation

Cancel I OK

Clicking on the letters in the left hand column selects or deselects the
corresponding options. The letters are those used in other Prospero
compilers to select options, and are written to the .LOG file and the .PRN
file to indicate which options were set.

The meaning of each option is described in the following sub-sections. The
default setting for each option is "off" when the software is shipped, but this
can be altered using Saue configuration, as described in section 3.1.8.

4.1.1 Compiler output to LOG file - option G

When this option is specified, a record of the compilation, with any errors
or compiler messages generated, is written to a file, whose name is the same
as that of the source, with ".LOG" added. This file can be useful either for
inspection of compile-time errors and/or for recording the compilation
status of each source file (code size, etc.).

I-5Q Section 4 - Operation of the compiler

4.1.2 Source listing to PRN file - option L

A listing of the pre-processed source (with all macros expanded) can be
generated as a by-product of compilation. Each line is preceded by its line
number within the file. The listing is output to a file with the name of the
source but ending in ".PRN", in the same folder as the source. After the
compilation it may be printed or displayed as desired. The debugger PROBE
will use the .PRN file (if available) to list the source lines as they are
executed.

4.1.3 Include source line information - option N

This option instructs the compiler to insert extra code into the object
program to maintain during execution a record of the source file name and
line number corresponding to the code currently being obeyed. This
information will be displayed in the event of any run-time error, and the
calling stack which is printed out (see section 6.3) will contain these file
names and line numbers (for all calls which occurred in source files
compiled with this option).

This option also has the effect of causing stack overflow checking to be
performed on procedure entry.

This option is needed if the PROBE symbolic debugger is to be used - see
section 8.

When this option is in force, the macro _NINFO is predefined (with an
empty body).

4.1.4 Check array indexes - option I

This option causes code to be compiled to determine whether or not array
index expressions are within the correct limits. The checks are carried out
just before an index value is to be used, and can have the effect of generating
more code.

Range checks can be valuable in the early stages of program testing. If code
size or speed is at a premium, they may be switched off once the program
has been tested.

When this option is in force, the macro JCHECK is predefined (with an
empty body).

Section 4 - Operation ofthe compiler |-51

4.1.5 Check assignments against bounds - option A

This option causes checks to be introduced during execution when
assignments of values are made and when values are passed as actual
parameters (and may have the effect of increasing the size of the generated
code). In the case of ordinal-type values, the check is on the range allowed
for such quantities.

When this option is in force, the macro ACHECK is predefined (with an
empty body).

4.1.6 Check pointers - option P

This option causes checks to be inserted at each "pointer dereference" (*p) in
the program. The check will detect any attempted use of a pointer which has
been set to NULL, and therefore has a good chance of picking up cases
where no value has been assigned.

When this option is in force, the macro PCHECK is predefined (with an
empty body).

4.1.7 Accept strict ANSI C Standard only - option S

When this option is invoked, the compiler disables use of the non-standard
features of Prospero C, namely:

$ permitted in identifiers,
pascal and fortran keywords

It also has the effectof checking the code more carefully for dubious or non
portable constructs, such as calling a function without a prototype, or failing
to return a value from a function. Several less serious errors which produce
warnings when the S option is not invoked become errors when it is. If a
program is to be transferred to a different C implementation, this check
helps to pick out any points which may call for attention.

When this option is in force, the standard predefined macro STDC is
defined, expanding to the constant 1. If it is not in force, the macro expands
to the constant 0.

1-52 Section 4 - Operation of the compiler

4.1.8 Char is unsigned - option U

By default, objects declared as plain char are sign extended when used in an
expression, i.e. plain char is equivalent to signed char. If the U option is
used, plain char objects do not sign extend in expressions, and plain char is
equivalent to unsigned char.

When this option is in force, the macro UCHAR is predefined (with an
empty body).

4.1.9 Generate compact code - option C

If the compact code option is invoked, the compiler substitutes shorter (but
somewhat slower) alternatives for certain object code sequences. The amount
of difference this will make depends on the nature of the program. Use of
the option would only be recommended for particularly large programs.

When this option is in force, the macro _COMPACT is predefined (with an
empty body).

4.1.10 Wait after errors - option W

This option is somewhat different from the others, as it concerns the way the
compiler (and linker) behave when an error or warning is encountered. If
the option is on, each error reported will cause the compiler to wait until
either Abort or Continue is selected. If it is off, the compiler will pause
after each error report to allow the user to abort, but if Rbort is not selected
within a short time compilation will continue, so that a report of all errors
can be generated in the LOG file without having to click Continue after
each one.

4.1.11 Autosave after compilation - option V

This option is not strictly a compiler option, but rather it instructs the
Workbench to automatically save a file after successful compilation. This
option is recommended because if the program runs and crashes, the
sourcefile may be lost from memory. If compilation is unsuccessful, no
action is taken. The file is saved with a date stamp corresponding to the start
of the compilation (and is thus eariler than the .BIN file produced) to assist
in the use of MAKE like utilities.

Section 4 - Operation of the compiler 1-53

4.2 Check syntax

If this command is used, the compiler Pass 1 is invoked as normal on the
source in the current top window, but will not produce any intermediate
code. Selecting this option speeds up compilation considerably, and would be
recommended if a source is known to contain errors (perhaps because it is
being imported from another system), or if the only purpose of the
compilation is to generate a source listing (.PRN) file, for example. The
compiler still uses the current options as described above, although not all
are meaningful when no code is produced. If a .LOG file or .PRN file is
produced, the list of options used will include option Y, to indicate that it
was produced by a syntax check rather than a full compilation. When using
the command line version of the compiler, option Y can be specified to
perform a syntax check only.

4.3 Command line version

The C compiler can also be driven independently of the Workbench, using
the supplied program program C.TTP. This might be useful when used in
conjunction with a command-line processor's batch-file or Make facilities, or
when compiling very large programs where the compiler runs out of
memory when executed from the Workbench. The command line version of
the compiler can be driven in two ways.

4.3.1 The one-line command

This is when a command tail containing the source filename is specified. If
no extension is given, the default .C is supplied automatically. The filename
may optionally be followed on the command line by the character "/"
together with one or more letters, as in:

B:PRIME/LM

Each letter stands for the corresponding compile-time option (see section
4.1). The letters may be run together, as in this example, or may be
separated by spaces, commas, or further / characters. It makes no difference
whether they are in upper or lower case.

4.3.2 Conversational mode

If no command tail is specified, a conversational mode of operation is
entered. The first request is for the name of the source file, the response
being e.g. B:PRIME, terminated by Return. If no filename extension is
given, the default .C is supplied automatically.

1-54 Section 4 - Operation of the compiler

There is then a series of prompts enabling some or all of the options to be
altered for this compilation. There are three possible responses to each
question in the list:

Y or y to select the option
N or n to reject the option and go to the next

to terminate the prompting and use the defaults from then on.

(Note that any characters other than these are ignored, and that it is not
necessary to press Return for the reply to be accepted.) When the list is
terminated, or the end is reached by Y and N responses, the compilation
process begins.

4.3.3 Making use of variables

Three environment variables are inspected by the C compiler, for determing
the Location of include files, temporary files and the compiler overlays. A
further environment variable (DEFINE) may be used to pre-define macros,
and is described in section 4.3.4 below. These environment variables are
normally set using the SET command in a command shell. Several paths may
be specified, separated by semi-colons.

Thus

SETINCLUDE=C:\PROC\H\;C:\MYPROG\INC\

directs the compiler to search the current directory, and then the paths
C:\PROC\H and C:\MYPROG\INC for include and header files.

Similary, the compiler will place temporary files in the first path specified
by the environment variable TMP, or use the current directory if no path is
specified.

As with other programs, the environment variable PATH will be used to
search for the compiler overlays.

4.3.4 Command-line macros

When operating the compiler from the command-line using C.TTP in the
one-line moide, it is possible to pre-define macros using the /D option. The
letter /D in the options part of the command tail is followed by the name of a
macro to be defined, followed optionally by an ' =' or space and then the
body to which it should expand. The body is terminated by either the end of
the command-line or by a 'V character. Multiple macros can be defined by
separating them with semicolons, or by specifiying the /D option several

Section 4 - Operation of the compiler 1-55

times. The macros are defined exactly as if, before the start of the source,
there appears the statement

#define <macro> <body>

This may provoke error reports from line 0 if, for example, the macro
name is badly formed, or a macro is specified more than once.

The environment variable DEFINE may also be used to specify macros to be
predefined, using the same format.

4.4 Compiler messages

When the compilation process begins, messages are output to the form titled
Compiling., (or to standard output, for the command-line version) and
optionally to the log file, to report progress and any irregularities. The
source file name, current line number and last error are shown, as in the
example below :-

Conpiling B:\SOURCES\HftNDEL
Last Error :- Line no :- 35

itert!ons++;
A

Error : Identifier not declared - assuned 'extern int1
itertions

Abort jContinue !

Errors in the source program may be detected during either of the passes,
though the majority generally appear in Pass 1, which can also generate
warnings. Each error or warning is reported in the progress form, and
compilation pauses, for a short time if option W (Wait after errors) was not
selected, or until the user clicks on Abort or Continue if it was. In either
mode, the user may click on Abort at any time to return to editing - if an
error has been reported, and the line in question is in the top window (rather
than in an included file, or being compiled from disk), then aborting will
cause the text cursor to be positioned at the line where the compiler detected
the error.

Each error is reported in the following format: Either Error : or IDarning
: , followed by an explanatory message if the file C.ERR is found, or an
error number if it is not, preceded by the text of the line in error (Pass 1
errors only). In Appendix B of this manual is a list of the error codes, with

1-56 Section 4 - Operation of the compiler

somewhat fuller descriptions where appropriate. If option G is in force, the
error message will also be written to the .LOG file

A single error, as the programmer sees it, may sometimes give rise to a
number of reports. An obvious instance is a missing declaration, which will
be signalled at each reference. It is also possible for one error to have a
"cascading" effect. Large error counts should, therefore, not be taken at face
value.

If Pass 1 is error free, Pass 2 will be executed to translate the intermediate
work file into a .BIN file ready to be linked. The line number is not updated
during Pass 2, but the user can still abort if desired.

When operating the compiler from the command-line, the following status
codes are returned, indicating the success or otherwise of compilation:

Status Meaning

0 Clean compilation without errors or warnings
1 Compilation completed, but there were warnings
2 Compilation failed due to errors

Section 5 - Operation of the linker 1-57

5 OPERATION OF THE LINKER

The linker processes a sequence of one or more files in relocatable object
format and combines them into an executable program file.

During linking, messages are output to the form titled Linking... to report
progress and any errors etc., and allow the user to interrupt the process if
required. The executable file name, current object file and last error are
shown, as in the example below :-

Linking B:\SOURCES\MrNDEL.PRG
Last Error :- Reading

Unsatisfied external: APPLJNIT

- LAST.BIN

Abort | IContinue I

The linking process can be interrupted at any stage by clicking on Abort. If
errors are reported, the linker will use the Wait after errors option (see
section 4.1.10) to determine whether to wait for a button to be selected
before continuing, or to simply pause for a while before continuing.

The linker builds a .PRG file in the normal GEMDOS format: a 28-byte
header followed by the Text Segment image.

All addresses and values output, or requested, by the linker are in units of
bytes and in hexadecimal notation.

~7 1-58 Section 5 - Operation of the linker

5.1 Simple use of the Linker

For most programming requirements the linking process is very simple.
The Link menu presents two ways of selecting the file to be linked, and a
selection of optional libraries:

Itm^wRun Options
3 Link* E0L

With snail libraries

With CDEM
Using control file

y

Link other file

5.1.1 Link

The Link option links the current top window (which will be shown in the
menu), and is only available if the file has been successfully compiled since it
was last edited. The other options on the menu determine which libraries are
included.

5.1.2 With small libraries

The small libraries (CFIRSTO.BIN and CLIBO.BIN) can be used by a
program which uses no floating point operations of any kind, and can
significantly reduce the size of the program generated. Note however that
using the small libraries when the floating point routines are in fact used
may not give rise to any errors at link time, but cause unpredictable
behavior when the program is executed. If in doubt, it is better to use the
standard libraries, by not selecting this option.

5.1.3 With CGEM

Selecting this item causes the CGEM.BIN library to be included in the link.
The CGEM library is required for linking programs which make calls to the
GEM AES or VDI bindings described in the AES and VDI manuals - if this
library is required, but not included in the link, the Linker will report
undefined external symbols, as in the example above, where CGEM has
inadvertently been missed out. The .PRG file produced is unlikely to be
usable in this case, so it is usually best to click Abort, then restart the link
with the correct libraries.

Section 5 - Operation of the linker 1-59
5.1.4 With control file

This option specifies that a control file is to be used to specify the files to be
linked - this might be used when several separately compiled modules are to
be linked together, or if non-default linker options are to be used. The name
of the control file to be used in subsequent links is specified using the file
selector form. Link control files are described in detail in section 5.2.

5.1.5 Link other file

If LUith control file is selected, the files to be linked are defined by the
contents of the control file, and this option is identical to Link. Otherwise, a
filename is specified in the usual way using the file selector form, and this
file is linked using the libraries specified by the options described above.

The remainder of this chapter concerns advanced use of the linker and may
be skipped by most programmers.

~y 1-60 Section 5 - Operation of the linker

5.2 Linking using a control file

The linker can be used in a more powerful way by driving it with a control
file. This is a text file created by the editor with an extension of .LNK,
which is read by the linker to specify what files are to be linked, and various
other options. To link using a control file, the Using control file item from
the Link menu should be selected. This presents the file selector form so that
the link control file can be nominated, and disables the LUith CGEM and
LUith small libraries items. The menu is altered to give the name of the
link control file to be used. Selecting this item again reverts to the simple
mode of linking described above, and enables the LUith CGEM and LUith
small libraries items.

The control file consists of 4 sections, each of which should start on a fresh
line, with no blank lines between or within sections. Note that upper and
lower case are not distinguished in the control file - all the examples below
are given in upper case, but would work equally well in either.

Section 1 The name and optional drive and path of the executable
program file to be produced. If no extension is given, .PRG is
supplied by the linker.
E.g. MYDEMO.TTP

Section 2 This section can be used to alter the stack allocated to the
program (see section 5.2.1). If the section consists of the single
line 'N', the default stack size (4 K) will be allocated. If the
first line is 'Y', the next line should contain the required stack
size, in hexadecimal.
E.g. Y

4000

would allocate a 16 K stack.

Section 3 This section is used to specify whether the linker is to produce
any link map reports (see section 5.2.2). The first three lines
should contain either 'Y' or 'N', indicating whether the linker
should produce a module map, symbol map and section map
respectively. If the answer to any of the above is 'Y', there
should be a further line in this section, again containing 'Y' or
'N', specifying whether the linker is to include names
beginning with '.' in the maps. These names are reserved for
use by the Prospero C system, and are unlikely to be of great
interest most of the time. The maps are written to a file whose
name is the same as the executable file being produced, with a
.MAP extension. This can be examined using the Workbench
or printed out as required.

Section 5 - Operation of the linker 1-61

E.g. Y
N

Y

N

would produce a module map and segment map, with '.' names
not included.

Section 4 This section specifies what object modules are to be linked to
produce the executable file. This consists of a list of object
module specifications, separated by spaces, commas, or
newline characters, and terminated with a full stop. Usually
this will be the names of all the object files and libraries to be
linked; the module CFIRSTO (or its alternative version
FIRSTO) must appear at the start of the list, and the module
LAST must be at the end. Note that the default folder will be
that containing the control file, so that the filenames of the
CFIRST and LAST object files and the standard libraries will
usually require a path specifier. Any libraries being linked
must have a /S qualifier to indicate that they are to be scanned
selectively. Further details of object module specifiers are
given below in section 5.2.3.
E.g. \PROC\CFIRST

PRIME

\PROC\CLIB/S

\PROC\LAST

5.2.1 Stack allocation

The linker will allocate a stack of 4K, unless a link control file has been used
which specifies the stack size to be used - see above.

5.2.2 Linker maps

The linker can optionally produce maps of the executable file organized by
module, by Public/External names and by sections - see above for details of
the link control file.

The module map consists of address and other information for the various
sections which contribute to each module's storage requirements.

The symbol map consists of the addresses, relative to the start of the Text
Segment of all Public or External symbols resolved by the linker, printed
both in alphabetical and in numerical ordering.

1-62 Section 5 - Operation ofthe linker

The section map indicates the address and size of each section and common
block produced. For sections, the address is relative to the start of the Text
Segment (i.e. the code image); for common blocks, the address is relative to
the start of the block of memory acquired at program start-up for all the
common blocks together.

5.2.3 Module Specifications

The final section of the control file consists of line(s) containing the names
of all object files to be linked, separated by commas or spaces, and
terminated with a full stop. Each file name may be followed by a "module
selector" to specify that only some of the modules are selected. (The default
is to select all modules from the file.) For this purpose, two kinds of
"selector" are provided.

The first kind is the "selective scan" of an input file, and is specified by
following the filename with the two characters /S. Only those modules that
have been referenced by previously selected modules will be incorporated
into the executable file (and so into any reports). This should be used for all
libraries being linked - in particular all control files will normally contain
the specifier CLIB/S or CLIBS/S, immediately before the LAST object file.

When reading an input file in the "selective scan" (/S) mode, the linker and
the librarian (see section 7) adopt identical selection criteria.

The second kind of selection is by "module enumeration", and is specified by
following the filename with the character "[", then a collection of module
names, and finally the character "]". This "collection" of module names is
to be written as a list of names, separated by commas; optionally, in place of
a module name, the listcan contain, at any point, two names separated by "-"
(i.e. namel-name2), signifying "all modules from namel to name2
inclusive". Note that the case of the letters in the module name is not
significant.

Example: FNAME1 [MODI, MOD4-MOD8, MOD16]

A particular filename can be followed by at most one of these two kinds of
selector.

An example of an input line containingall the above features is:

FNAME1, FNAME2[M6], FNAME3[MOD3-MOD9], LIBNAME/S

Section 5 - Operation of the linker 1-63
5.3 Command line version

The linker can also be driven independently of the Workbench, using the
supplied program PROLINK.TTP. This might be useful when used in
conjunction with a command-line processor batch processing or Make
facilities. The command line version of the linker can be driven in three

ways.

5.3.1 The one-line command

This is when a command tail containing all the required information is
specified. The command tail consists of a specification of the executable
filename, and then one or more input object filenames. The executable
filename must be followed by the '=' character; if no extension is given, the
extension .PRG is supplied by the linker.

As an example:

A:PRIME=CFIRST,B:PRIME,CLIB/S,LAST

The input filenames are separated from one another by commas and/or
spaces; if no extension is given, .BIN is supplied by the linker. Any of the
input filenames may be followed by a "module selector" (see 5.2.3).

The most usual such "selector" consists of the two characters /S, to indicate
that a "selective" scan of that file is to be made, i.e. that only those modules
are to be incorporated that have been referenced by previously-encountered
modules. (In this context, a "module" is the output from one C compilation,
or the output from one execution of an Assembler.)

In the case of the C run-time library, a selective scan must always be
specified, i.e. CLIB/S. The file CFIRST (or CFIRSTO) must be the first file
input, and LAST must be the last file input, immediately preceded by the
run-time library CL1B (or CLIBO). CFIRST and LAST should not be
selectively scanned.

5.3.2 Conversational mode

If no command line is specified, the conversational mode of operation is
entered. The name of the executable file is first requested, then there is a
series of questions relating to link-time options, followed by an invitation to
input one or more lines containing filename(s). The link time options are
described in detail in section 5.2.

~7 1-64 Section 5 - Operation of the linker

5.3.3 Indirect mode

To operate the linker using the indirect mode, a command tail of the form

Afilename

should be supplied, where "filename" is the name of a linker command file,
as described in section 5.2. Note that if "filename" does not have an
extension, none is supplied by the linker. The "A" character may be
optionally followed by spaces.

5.4 Linker messages

5.4.1 Non-fatal errors

The mostcommon situation leading to an error message is when all the input
files have been processed and yet there are still External references
outstanding for which no corresponding C function or external object (or
Assembler Public name) has been encountered. This may be because a .BIN
filename has been inadvertently omitted from the list in a control file, or the
program has used GEM calls, but LUith CGEM was not selected. The
message

Unsatisfied external:

is printed on the form, followed by the unmatched names. If the Wait after
errors option is in force (see section 4.1.10), the linker will wait until either
Hbort or Continue is clicked- otherwise there will be a short pause before
continuing.

If the user does not abort, the linking process will continue to its conclusion.
In particular, an executable file will be produced which is normal except that
any location containing a reference to a missing routine will not contain a
sensible value. Caution should therefore be exercised if execution of the
program is attempted: a run-time error Y can occur.

Other non-fatal errors that may be reported are as follows :

If a character other than 's' is supplied after '/', the linker reports this, and
ignores the spurious character.

~ Section 5 - Operation of the linker 1-65

5.4.2 Fatal errors

If any other error situation occurs, continuation is not possible. A message is
output to the form describing the problem, and the linker will wait until
either Abort or Continue is clicked (if Wait after errors is in force - see
section 4.1.10) or there will be a short pause (if it is not) before aborting.
An alert indicates that the link was not successful, and no usable .PRG file
will have been produced.

The first group of such messages are caused by driving the linker
incorrectly. There are 5 of these:

Command file not found

When Using control file is in force, the specified control file name is
illegal or the file does not exist.

No executable filename supplied
Object file not found
Illegal Stack size

These are most likely to be caused by errors in the linker control file,
or by attempting to link (perhaps using Link other file) a non-existent
object file.

Illegal module-selection syntax

The rules given in 5.2.3 have been broken. In particular, "-" must have
a module name on either side of it, and "[" must have a matching "]" on
the same line.

The second group of errors are when the linker is unable to continue
execution. There are 3 of these:

Not enough memory

The linker has run out of work space (for its symbol tables etc.).

Executable file too big

Exceeds 16 Mbytes.

Disk/DOS error

Disk full, for example.

1-66 Section 5 - Operation of the linker

The third group of errors are most likely due to presenting the linker with a
mutually inconsistent set of .BIN files:

Public name defined more than once

For example, two functions with the same name.

SECTION/COMMON inconsistency

For example an Assembler SECTION directive using the same name as
a Pascal COMMON variable name, in a mixed language program.

The fourth group of errors are because a linker restriction has been violated.
The messages are:

Absolute ORG not supported

Attempt to preset COMMON

The fifth group of errors should never occur. The most probable
explanation is that an input file is not in the appropriate relocatable object
format at all. The error messages are:

Cannot find section

Cannot find subsection

Cannot find symbol
End of input file encountered
Illegal directive encountered
Illegal id encountered
Illegal XREF relocation encountered

Input file relocatable format incorrect
Name in input file exceeds 32 characters
XREF expression out of range

The last group of errors should again never occur, and could indicate a
linker malfunction:

Linker internal error

Paging error on .PRG file

Section 6 - Operation ofobject programs 1-67

6 OPERATION OF OBJECT PROGRAMS

The operation of an object program under GEMDOS is determined very
much by the program itself. Programs can be run using the Workbench Run
menu (see section 3.1.7), or from the GEM Desktop or other command
shell.

6.1 Arguments to main

The object program starts up in the function called main. This may be
declared without parameters, or with two parameters, usually known as
argc and argv (you can call them what you like), whose contents are
defined from the parameters passed to the object program in its command
tail. The first parameter, argc, has type int, and describes the number of
command strings passed. The second parameter argv is an array of pointer
to char, containing pointers to null terminated strings containing the
parameters themselves, argv [0] points to a null string - this would contain
the name of the program if it were made available by the operating system.
argv [argc] contains a null pointer. The semantics determining the parsing
of the command tail into strings is described in Appendix H.

If the main function returns a value, this value will be passed to the parent
process as the return code. If it returns without a value, the return code will
be undefined.

6.2 Pre-connected files

Default assignments of files are as described in Part II. In particular, the
standard C streams stdin and stdout are directed to standard input and output,
i.e. to the keyboard and screen, respectively.

If a program uses the spawn facility to run a child program, its own
standard streams stdin and stdout are automatically made available to the
child program (through any number of parent-child levels).

6.3 Run-time errors

The only aspect of program operation not determined from the program
itself arises if an error is detected by the run-time software.

Once program execution proper has commenced, errors may be detected in a
number of situations: division by zero, floating point overflow and so on. In
some cases they may be found by the checking code incorporated by one of
the compile-time options (see section 4.1). In all cases a report is made on
the console, giving error type - identified by a letter - and the hexadecimal
machine address relative to the start of the code:

~7 1-68 Section 6 - Operation of object programs

Error x at address aaaaaa

A list of the run-time error codes is given in Appendix C. The address
aaaaaa is directly comparable with the addresses provided in the .MAP file
generated by the Linker. For some errors, additional information appears
with the standard message.

The standard error message is followed by trace information showing how
the point in error was reached. This takes the form of a list of addresses at
which function calls occurred. All addresses are relative to the start of the

code. The first address given corresponds to the point where the main
function called the next lower level of function, and so on up to the actual
function in error.

For each source file which was compiled with the N ("track source line
numbers") option, the addresses in the error report are made more
intelligible (without recourse to the linker's .MAP file) by the addition of
the source file name, the function name and the line number.

Finally, many classes of error allow continuation. In these cases, the
message

Continue? (Y/N)

appears on the console. The program can be continued by pressing the key Y
(or y), or aborted by pressing N (or n). (All other keys are ignored.)

6.4 Miscellaneous error messages

If a program was executed from the GEM Desktop, these messages will
appear on the screen. If a program was initiated using spawn, the error is
passed back as a return code to the initiating program. If such a return code
is detected when running a program from the Workbench, the error is
reported in an alert box.

Execution error: <error text>

where <error text> is one of the following:

wrong version (spawn... return code-6)
There is an inconsistency between the version of the library or the
library header linked and the generated code. Most likely to be caused
by upgrading to a new version of the compiler but using the old
versions of the library, or vice versa.

out of memory (spawn... return code-7)
Insufficient memory is available for loading and/or running the user
program.

Section 6 - Operation ofobject programs 1-69

init. failure (spawn... return code-8)
The program has successfully been loaded, but then an error occurred
in one of the pre-execution steps:

(a) processing the relocatable items in section .ATAB,
(b) processing the data-initialization items in section .INIT

If the program consists purely of C code, this error implies a problem
with the C software, and it should be reported. If user-provided
assembler language routines were included in the link of the user
program, they should be checked to ensure that:

(a) They do not use section .INIT.

(b) They only use section .ATAB, if at all, as described in Part II
section 5, namely for achieving the relocation of external object
addresses and of JMP instructions having 4-byte absolute operands. In
particular, this error can be caused quite easily by not preceding the
assembler instructions by a suitable SECTION directive, so that they
become part of .ATAB instead.

It can quickly be verified whether or not assembler routines are the
cause of this error, by linking the user program without them, then
loading it. The program will then fail during execution, rather than
during initialization.

no parent pgm (spawn... return code-9)
A program which is designed to be used only as an overlay, and share
some of its parent's library code, will give this error if executed
directly from the Desktop.

stdio failure (spawn... return code-10)
Unsuccessful attempt to read or write a standard file.

shrink memory failure (spawn... return code-11)
When a program starts execution, the run-time library initialization
attempts to release the memory not required by the program. If this
operation fails, this error results. (May be due to corruption of
memory, or an invalid program file header.)

linking order (spawn... return code-12)
Unlikely to occur, but indicates an erroneous attempt to link with .BIN
files generated by other compilers or assemblers.

~7 1-70 Section 7 - Operation of the librarian

7 OPERATION OF THE LIBRARIAN

The librarian is a standard GEMDOS executable program, which does not
make use of GEM. It can be operated from the Workbench, but is not fully
integrated (due to memory and disk space limitations). It should be run
using Run other file to call the program PROLIB.PRG (with Run under
GEM not selected), or from the GEM Desktop or other command shell. The
LUith command tail option can be used to enter the command tail, or
PROLIB can be run interactively if no command tail is specified.

The purpose of the PROLIB librarian utility program is to administer files
which are in relocatable object format - such as those produced by the
Prospero C, Prospero Pascal or Prospero Fortran compilers, or by various
assemblers. Individual modules may be extracted, and/or files may be
merged together into libraries. A number of report options are also
available.

A file created by PROLIB will be in the same relocatable format, and so
suitable for processing by PROLINK or other linkers capable of handling
this format (such as GST's LINK).

7.1 Forms of invocation

There are three ways of operating the librarian: the "one-line", the
"conversational" and the "indirect" mode. All the options are available in
each mode.

7.1.1 The one-line command

The command tail must be constructed as follows : First must come the

name of the "library" file. This may optionally be followed by the character
/ t <~trr a t V»£*t- tiMm r\ n » i~tr rvii^rp l<>tt£tf'C QC 1 **> "* LVJ^Vtll^-l VVlLli Ull^ VJi IllWl^ IVIL^-IO, lib ill.

B:PRIME/MX

Each letter stands for a particular option regulating the report(s) that are
produced by the librarian (see 7.2). The letters may be run together, as in
this example, or may be separated by spaces or further "/" characters; they
may be in upper or lower case.

A one-line command of the above form indicates a "read-only" operation on
the library file: the file must already exist, and the purpose of the PROLIB
execution is solely to list certain information about this relocatable file.

Section 7 - Operation of the librarian 1-71

Alternatively, the library filename (and any option letters) may be followed
by an "=" sign and one or more input filenames, separated by commas, as in:

NEWLIB/M = MODI, MOD2

A one-line command of this form indicates a "create" mode of operation: if
the library file already exists it will be overwritten, and the purpose of the
PROLIB execution is to combine the input filenames into a new library with
the given name. (The librarian actually creates the file, in the first place,
with an extension of .$$$, and only renames this to the required library
filename on successful completion of processing.) Any of the input
filenames may be immediately followed by a "module selector" (see 7.3).

A variant of this "create" mode is to omit the library filename but still
specify report(s). The latter will be produced as usual but no actual library
file will be written. For example:

/MXD = MODI, MOD2

If no filename extension is given (whether for the library or the component
input file names), the extension .BIN is supplied automatically by the
librarian.

7.1.2 Conversational mode

If no command tail is specified, the conversational mode of operation is
entered.

The first request is for the library filename. A filename can be supplied, or
simply c/r (Return) on its own to indicate that report(s) but no output library
file are required. There is then a series of questions relating to the report
options (cf. 7.2). Reply Y(or y) to select the option, otherwise N (or n).

The final question (which is only asked if a library filename has been
supplied) is whether or not to create a new library with the given filename.
If the answer is affirmative, or if no library filename was supplied, the
librarian repeatedly issues an invitation to input a line containing
filename(s). The filenames are entered just as for the one-line mode of
operation, that is, they must be separated by commas and each may be
followed by a "module selector". To terminate this process, respond to the
prompt

Input filename(s) -

with a full-stop (.) character, or with just c/r (Return) on its own.

1-72 Section 7 - Operation of the librarian

If no filename extension is given (whether for the library or the input
filenames), the extension .BIN is supplied automatically.

7.1.3 Indirect mode

The indirect mode of operating the librarian combines the features of the
first two modes: PROLIB is executed with a command tail containing the
name of a "command file" (preceded by the character Aand optional spaces),
this command file containing the answers to the questions which would be
asked in the "conversational" mode.

For example, the command tail

* MLIB

where the text file MLIB contains the lines

MLIB

N

N

N

Y

M1LIB,M2LIB,M3LIB

causes PROLIB to combine the modules from the 3 files MILIB.BIN,
M2LIB.BIN and M3LIB.BIN into the composite library file MLIB.BIN.
Note that if the command file name has no extension, none is supplied by
PROLIB.

7.2 Report options

The various report options are described in the following sub-sections. Each
sub-heading contains (in brackets) the associated letter which must be written
after the library filename in the one-line form of execution in order to
invoke the option.

7.2.1 Module listing (M)

A report is produced which gives, for each module in the library file (in
order of occurrence within the file), the name of the module, the Sections it
contains, and all Public symbols defined and External symbols referenced
within it. The "sections" are pieces of the code or data which go to make up
an executable program; their sizes (in decimal) are printed.

Section 7 - Operation of the librarian 1-73

7.2.2 Cross-reference listing (X)

The report consists of two parts. The first part gives, for each
Public/External name in the library file (in alphabetical order), the name of
the module in which it is defined (i.e. is a Public name) plus the names of all
modules in which it is referenced (i.e. is an External name).

The second part is a listing of all Sections (in alphabetical order) together
with the names of the modules which reference them.

7.2.3 Unsatisfied references listing (U)

This report is concerned with the requirement imposed by PROLINK (along
with many other linkers) that, for a library which is to be "selectively"
searched (cf. the /S option described in section 5.2.3), the component
modules must be ordered in such a way that, if module A contains an
external reference to an entry point in module B, then module B must follow
module A in the library file. The report lists all External names (in
alphabetical order) which do not obey this rule, either because they are
defined in an earlier module or because they are not defined at all.

7.2.4 Suppress '.' names (N)

(This option is only meaningful if at least one of M, U or X has been
selected.)

In order to avoid conflict with user-defined names, most Public and Section
names in the C library begin with '.'. Since they are rather numerous, it can
on occasion be desirable to suppress these. By specifying this option, no
name beginning with '.' will appear in the report(s). The default is that all
names, including those beginning with '.', are listed.

7.2.5 Listings to disk (D)

(This option is only meaningful if at least one of M, U or X has been
selected.)

The default destination for reports is the console. If this option is chosen, the
reports are written instead to a disk file. The file is given the same name as
the library file, but with the extension .PRN. If no library filename was
given, the reports are written to $$$$$$$$.PRN.

f 1-74 Section 7- Operation of the librarian
7.3 Module selection

In the "create" mode of operation (only), the user may specify that only
some of the modules in an input file are selected. (The default is to select all
modules from each file.) For this purpose, two kinds of "selector" are
provided.

The first kind is the "selective scan" of an input file, and is specified by
following the filename with the two characters IS. Only those modules
that have been referenced by previously selected modules will be
incorporated into the output library file (and so into any reports).

Example: FNAME/S

The second kind is by "module enumeration", and is specified by following
the filename with the character " [", then a collection of module names, and
finally the character "] ". This "collection" of module names is to be written
as a list of names, separated by commas; optionally, in place of a module
name, the list can contain, at any point, two names separated by "-" (i.e.
namel-name2), signifying "all modules from namel to name2 inclusive".

Example: FNAME1 [MODI, MOD4-MOD8, MOD16]

Note that the case of the letters in the module-name is not significant.

A particular filename can be followed by at most one of these two kinds of
selector.

An example of an input line containing all the above features is:

FNAME1, FNAME2 [M6], FNAME3 [MOD3-MOD9], LIBNAME/S

When reading an input file in the "selective scan" (/S) mode, the librarian
and the linker adont identical selection criteria. Use may be made of this to
obtain an analysis of the composition of a fully-linked .PRG file. Suppose,
for example, one wishes to know which modules from CLIB are needed by
the PRIME program referred to in section 2 above. Execution of PROLIB
with the command tail

TEMP/M=FIRST, B.-PRIME, CLIB/S, LAST

will produce a report giving details of PRIME.BIN itself and of FIRST,
LAST, and all the contributory modules from CLIB. At the same time, the
relocatable file TEMP.BIN is produced. This file can subsequently be made
the object of other reports, for example by executing PROLIB with the
command tail:

TEMP/X

Section 7 - Operation ofthe librarian 1-75

7.4 Librarian messages

7.4. I Normal messages

If in the "create" mode, when it starts to process each input file the librarian
writes the full filename to the console.

7.4.2 Error messages

7.4.2.1 Non-fatal errors

If an input file cannot be found (perhaps because its name has been
misspelled), the librarian reports this and invites more filename(s).

If a character other than 'S' is supplied after '/' following an input filename
(i.e. where a "selective scan" directive is anticipated), the librarian reports
this error and ignores the incorrect character.

7.4.2.2 Fatal errors

If any other error situation occurs, execution is aborted immediately, after
outputting a message to the console.

The first group of such messages are caused by driving the librarian
incorrectly. There are 5 of these.

Command line improperly terminated

In the one-line command mode, the library filename and switches have
been read, followed by a character other than "=".

Command file not found

In the indirect mode, the filename after the Acharacter is illegal or the
file does not exist.

No library filename supplied

In the indirect mode, the first line in the command file should contain a
valid GEMDOS filename.

Library file not found

A report has been requested for a nonexistent library file.

* 1-76 Section 7 - Operation of the librarian

Illegal module-selection syntax

The rules given in 7.3 have been broken. In particular, "-" must have a
module name on either side of it, and "|" must have a matching "|" on
the same line.

The second group of errors are when the librarian is unable to continue
execution. There are 2 of these:

Not enough memory

The librarian has run out of work space (for its symbol tables, etc.).

Disk/DOS error

Disk full, for example.

The third type of error is because a librarian restriction gas been violated.
The only message of this type is:

Absolute ORG not supported

The fourth group of errors should never occur. The most probable cause is
that an input file is not in the appropriate relocatable format at all. The
error messages are:

Cannot find section

Cannot find subsection

End of input file encountered
Illegal directive encountered
Illegal id encountered
Input file relocatable format incorrect
Name in input file exceeds 32 characters
SECTION/COMMON inconsistency

The remaining error should again never occur, and may indicate a librarian
malfunction:

Librarian internal error

Section 8 - The symbolic debugger 1-77

8 THE SYMBOLIC DEBUGGER

A source level debugger PROBE is supplied with Prospero C. This provides
display of source program lines as they execute, together with inspection and
modification of program variables. It is also possible to watch variables as
they change, or halt the program when particular conditions hold.

Probe is simple in operation, and includes an on-line help facility. Since
Probe operates in source language terms, no additional knowledge of
assembler code or operating system is required. Probe is useful not only for
finding programming errors, but provides general insight into the run-time
operation of programs. This is particularly useful for programmers new to
compiled languages. On the other hand, if machine level access is required,
then Probe can be used in conjunction with SID or any other machine level
debugger.

8.1 General description

Probe can be called by selecting Debug program from the Workbench Run
menu :

Idlfill Options
a Run
Run other file

With connand tail

Run under GEM

Debug progran MP

or by use of the command ♦ P. The File Selector form is presented from
which the program to be debugged can be selected. The system then returns
to a GEM or TOS type screen and control passes to Probe. Probe executes
the program selected; this program must have been compiled with the
compiler N option and preferably with L as well, in order to provide source
line information to Probe.

Probe does not itself use GEM, but can be used to debug programs which
do. When using Probe on a GEM program, screen switching can be used to
direct the output from the program to a different memory area from
Probe's output. As Probe is a stand-alone program, and not integrated into
the Workbench, it can be run from the GEM Desktop when memory is
short.

1-78 Section 8 - The symbolic debugger
Probe uses the supplementary files produced by the compiler when the
compilation options L and/or N are specified. These are the source listing
(.PRN) file (L option), and the name (.NAM) and symbol (.SYM) files (N
option). Probe will make use of any of the three supplementary files which
are present at run time, although their presence is not required for program
execution. Only modules compiled with the N option are "visible" to Probe.
If no part of a program was compiled with the N option, then the entire
program becomes invisible to Probe. Probe can operate with any number of
separately compiled source files.

Probe operates by checking the state of the object program at the start of
each statement. Only executable (rather than declarative) statements are
checked. Source lines which have such checkpoints are marked in the listing
file with an asterisk. Whenever Probe stops a program at a checkpoint, the
source file name, function name and source line are displayed on the screen,
and a debug command is requested with the Probe prompt '»'. Probe
always interrupts the program at the start of the very first executed line of
the program. The program may also be stopped, at any time when not itself
requesting console input, by striking a key on the keyboard.

After the prompt, commands are available to display the last few lines
executed (ROUTE command), the nest of active lines (CALLS command),
or any region of the source program (LIST command). Any variables active
in the program can be displayed (DISPLAY command), or modified
(ASSIGN command). Execution can be resumed for a number of source
lines (STEP command), or indefinitely (GO command). Execution can also
be halted at particular source lines, or when a variable meets a given
condition (BREAK command). These circumstances can alternatively simply
cause display of the source line and variable value with execution continuing
(WATCH command). Provided that the supplied PROBE.HLP file is
present, help is available for any of these commands (HELP command). The
dialogue with Probe can be recorded in a disk file (ECHO command), and
execution can be terminated with the QUIT command. Screen switching can
be enabled or disabled by means of the OUTPUT command, and the
alternate screen image to which the program's output has been sent can be
examined using the VIEW command. The X (execute) command allows any
other program to be executed from within Probe, without disturbing the
program under test.

Note that the monitoring of several conditions can substantially reduce the
execution speed of a program. If extensive computation occurs before the
program part to be tested, it is better not to enable monitoring until the
uninteresting part has executed.

Probe is independent of the normal run time error handling, which will
proceed exactly as it would if the program were not being Probed.

7 Section 8 - The symbolic debugger 1-79
8.2 Sample session

The following sample session shows Probe in use to test a program.
Familiarity with Probe is best gained by hands-on use, and a session similar
to that below can be used. The supplied example program PRIME is used
for the example. Input is shown in lower case.

Probe Symbolic Debugger version mg 1.2
Copyright (C) 1987 Prospero Software
(Type H for Help)
main (source file: PRIME)
PRIME.PRN1 not found. Which directory is it in? b:

189 (unsigned int factor, maxfactor;

>>d factor

0

>>go factor

Input a number up to a thousand million: 37

Smallest factor of 37 is :

203 * factor = 1;

204 + do

'g factor' 1
205 * factor += 2;

>>route

Last 7 starred lines:

main

189 { unsigned int factor, maxfactor;
194 * printf ("\nlnput a number up to a thousand

million : ") ;

195 * while (scanf ("%lu", Snumber) < 1);
196 * if (number)

197 * { printf ("\nSmallest factor of >lu is : ",
number);

198 * maxfactor = (unsigned int) sqrt ((double)
number);

201 * if (number I 2)

203 * factor = 1;

>>display
factor (unsigned) 1

maxfactor (unsigned) 6
number (uns long) 37

>>go

Prime.

Input a number up to a thousand million:

* 1-80 Section 8 - The symbolic debugger
8.3 General guidance on using Probe

8.3.1 GEMDOS aspects

Probe uses the GEMDOS "execute program" function to initiate programs
under test. C programs compiled with the N compilation option search for
Probe when they first start up, and link to Probe when it is found. This
means that programs under test do not necessarily have to be initiated by
Probe (although this is the normal method). It is possible to test, for
instance, a number of C programs linked by spawn . . . calls, or even the
operation of programs under the SID debugger program.

The process of searching for Probe is quick, and takes place only once.
There is no significant effect on the performance of a program when Probe
is absent.

GEMDOS is not a multitasking operating system, and therefore operations
such as opening files, performed by Probe while a program is being tested,
are considered by GEMDOS to be performed by the program under test.
Files are automatically closed by GEMDOS when a program terminates.
Probe is programmed tobe resilient to this unexpected closing of files that it
thinks of as its own, but errors are possible in complex situations involving
spawn, for example.

In order to use Probe, there must be enough memory for both Probe and the
program under test - Probe requires about 100K bytes. If Probe is executed
from the Workbench, this limits the memory available to the program under
test - however, Probe can be operated from the GEM Desktop as well as
from the Workbench, which may be useful for debugging larger programs.
It is quite possible to run other programs from within Probe, including text
editors and even the Workbench, subject to there being sufficient memory
and capacity for open files available.

If Probe is started using the Workbench Debug program menu selection,
the default folder will be the one from which the program under test was
loaded.

8.3.2 The start-up file

When a user program first enters Probe, a check is made in the current
directory for a text file PROBE.SYS. If this file is present, it is read as a
sequence of Probe commands, before taking any other action. All commands
are available, so other uses are possible, such as switching on disk logging of
the debugging session, or setting standard break or watch conditions.

7 Section 8- The symbolic debugger |-81
8.3.3 Entry after runtime errors

When Probe is present, runtime errors arc handled in exactly the same way
as normal. However, immediately after the standard error report has been
given, Probe is entered. The circumstances of the error can then be
investigated. If the program is resumed after the error, the standard error
handling will complete. Thus non-recoverable errors will result in
immediate termination of the program.

On entry to Probe after a runtime error (an error producing a C runtime
error report), the circumstances are slightly different from a normal entry,
since the error does not necessarily occur in a source module compiled with
option N, and even if it does, the error may not be at the start of the line.
Therefore the source line shown at such an error is part executed, rather
than in the usual unstarted state. It is also not very useful to enter a debugger
using the "T" command, because the machine instruction revealed will
usually be in some part of the runtime library, rather than the compiled
program code.

If the error was an arithmetic error in an assignment, bear in mind that the
assignment will be completed after the program resumes. To alter the value
of the variable being assigned, you must stop on the next statement (using
for example the "S" command), and correct the variable after the erroneous
assignment is complete.

8.3.4 Working with SID and other programs

When starting Probe from the Workbench, the file selector form is used to
obtain the name of the file that Probe will execute. This name is then passed
to Probe as its command tail, and the program is invoked by Probe as a
child process. It is possible to put any filename in Probe's command tail -
the simplest ways to do this from the Workbench are either to supply an

empty filename when selecting Debug program, then type the command
tail using Probe's X command, or to execute Probe (the file PROBE.PRG)
using Run other file, and supply a command tail to it in the usual way.
When starting Probe from the GEM Desktop, similar considerations apply.
For example, the command tail myprog can be replaced by
SID MYPROG.PRG. In this case, the machine level debugger SID will start
up, and the SID "G" command will start up MYPROG, the program under
test. At any time when the program under test is subsequently halted in
Probe, the "T" command will re-enter SID at the start of the compiled cede
for the current statement. SID can be used to step through the compiled code
instruction by instruction, or to trace execution into assembler coded
routines inaccessible to Probe.

f 1-82 Section 8- The symbolic debugger
8.4 Probe command parameters

The syntax notation used here is as described in appendix A.l.

8.4.1 Character set and source tokens

Any printing character can be used in Probe commands, although only a
subset is used outside character strings. Except in command names, upper
and lower case letters are significant. Each command is considered as a
sequence of lexical "tokens" interspersed with "separators", and the syntax
of commands is defined in these terms. The tokens are of four kinds:

token :

identifier
number-constant

string-constant
special-symbol

8.4.2 Identifiers

Identifiers are formed from letters, underscores and digits. An identifier
begins with a letter or underscore. Identifiers are used for variables and
enumerated constants of the source program, and for function names.

8.4.3 Number constants

Number constants comprise integer or floating constants preceded by an
optional minus sign. The syntax for number constants is as for the source
language. See Part III of this manual and section 8.6 below for a formal
specification. Character type constants containing one character can also be
used in Probe to denote the ASCII code of the character. Examples of the
various kinds of constants are:

l integer
-12345678 integer
1. 7 double

123.56E12 double

123.56E12f float

OxFF integer
'A' integer

7 Section 8- The symbolic debugger 1-83
8.4.4 String constants

String constants define null-terminated strings which can be assigned or
compared to variables of type char *. Their syntax is the same as in C, i.e.

string-constant:
" s-char-sequenceop,"

s-char-sequence:
s-char

s-char s-char-sequence
s-char:

Any character except double-quote, backslash or new-line
escape-sequence

8.4.5 Special symbols

The following character sequences form special symbols used in the
command syntax:

special-symbol : one of
I]

!= < > = > <= =

-> * -
? &

NULL is not reserved, but is recognized as a valid value for a C pointer
variable.

1-84 Section 8 - The symbolic debugger

8.4.6 Identifiers and qualifiers

Identifiers used in Probe are taken from the source program, and may refer
to functions or variables. Identifiers and line numbers in commands are
interpreted at a particular point in the source. This is normally the current
execution point, but may be modified within a command using a "qualifier",
which takes the form:

qualifier:
file-name :
function-name :

file-name:
' identifier '

function-name:
identifier

The ":" may be preceded and/or followed by spaces. A function-name
specifies an active function where identifiers and line numbers are to be
interpreted. A file-name specifies a source listing (.PRN) file. (The
directory name and .PRN extension are supplied by Probe.)

examples

main :

'PRIME':

In this way, it is possible to access any active variable of a program under
test. In the case of recursive functions, the latest activation is identified when
the name is used as a qualifier.

Section 8 - The symbolic debugger 1-85

8.4.7 Break and watch specifiers

Changes in variables, and the flow of execution of a program under test, can
be monitored using the BREAK, WATCH and GO commands. The
conditions to be monitored are defined using a "break-watch-specifier":

break-watch-specifier:
qualifieropl break-watch-conditionop,

break-watch-condition:

lines

variable

variable op value
lines:

integer-constant
integer-constant . . integer-constant

The break-watch-specifier identifies a region of source text whose execution
is to be monitored, or a variable whose changes are to be monitored. The
syntax covers a number of cases, and corresponding monitoring conditions:

(nothing at all)
file-name qualifier
function-name qualifier

lines

variable

variable op value

examples

main :

factor

year > 100
main:maxfactor

main:number = 0

20

20. .30

'PRIME' : 20 . .30

- execution of every source line
- execution of any line in that file
- execution of any line in a function of that

name

- restrict monitoring to given lines
- all changes to the variable
- all changes satisfying the condition

1-86 Section 8 - The symbolic debugger
8.5 Probe commands

In this section, the effect of each command is described. Note that in use,
command names can conveniently be abbreviated to their first character, and
can be given in upper or lower case.

8.5.1 assign

format

ASSIGN qualifierop, variable = value

The assign command sets a variable to a specified value. Probe will attempt
to make reasonable conversions where possible so that the value is
compatible with the variable. Identifiers used in the command will be
evaluated at the current point in the source, or in the context specified by a
qualifier if one is given. Array and structure variables can only be altered
element by element.

examples

a count=3

A buffer [i] = ' H'
Assign PlotArc:itemptr->radius[3] - 3.767

8.5.2 break

format

BREAK break-watch-specifierop,
BREAK ?

BREAK -

break-watch-specifier:
qualifierop, break-watch-conditionopt

break-watch-condition:
lines

variable

variable op value

The break command adds the given condition to the list of conditions which
cause the program under test to be interrupted, and Probe's command
interpreter to be entered. "Break -" removes all current break conditions.
"Break ?" displays the currently active break conditions.

Section 8 - The symbolic debugger 1-87

Conditions include:

a single source line or range of lines being executed, or
a variable changing in value or changing to satisfy a condition.

If no parameter is specified, then the execution of any source line (which has
been compiled with the N option) will result in a break at the beginning of
the line. Specifying just afile-name treats all lines in the file as break points.
Where a function-name is specified, execution of any source line in a
function of that name causes a break.

BREAK is identical to WATCH, except that whenever the condition is
satisfied, execution halts and a Probe command is requested rather than
continuing execution of the program. The information displayed is the same
in either case, as follows:

1 The source line causing the condition.
2 For variables, up to twenty characters of the original command, and

the value of the variable.

Since Probe displays the source line about to be executed whenever
execution is interrupted for command input, an extra line is displayed with
BREAK on a variable.

Any number of watch and break requests can be active at the same time. In
this case, the overall display will reflect the combination of all the current
requests. The source line displayed as causing a variable break or watch
display is Probe's best estimate of the appropriate line. Note that the line
displayed may be a direct assignment, an assignment via a pointer, or a pre-
or post-increment or decrement operation.

When a variable is referenced in a break or watch command, its location is
evaluated once only, at the time of the command. When watching, for
example, an array element A[I], the element watched remains the same, even
though the variable I may subsequently vary. If the object watched has
automatic storage duration, or is in dynamically allocated memory, it may
cease to exist while a break or watch command relating to it is still active. In
this case the break or watch ceases to be meaningful.

examples

B INUM>100

B A[I]

b name = "Alice"

B ?

Break -

1-88 Section 8 - The symbolic debugger

8.5.3 calls

format

CALLS

The calls command has no parameters. It displays each of the active source
lines in turn, starting with the current source line. All but the current line
will normally include a function call which is currently active. The active
functions which are named by the calls command can be used as qualifiers in
display commands to display their variables.

8.5.4 display

format

DISPLAY qualifierop, variableop,

The given variable is displayed, giving (the last component of) its name, (an
indication of) its type, and its value. Where only a function is specified, the
formal parameters and local variables are displayed. A warning is displayed
if the function is not active. Where a source file is specified, the static
variables that the file contains are displayed. Where no qualifier or variable
is specified, the local variables of the current function are displayed.
Structured variables are only displayed in full if specifically referenced in
the command.

examples

D I

D Readltem:

D sort: A[176]

The first of these displays the value of the variable I in the current function,
the second displays the parameters and variables of function Readitem, and
the third displays the value of element 176 of the array A in function sort.

8.5.5 echo

format

ECHO

The echo command allows for all interaction with Probe to be logged to the
disk file PROBE.LOG. Probe always opens this file at the start of a session.
Alternate uses of the echo command switchon and off the logging process.

I

<f Section 8- The symbolic debugger 1-89
8.5.6 go

format

GO break-watch-specificropl

Execution of the program under test is resumed, with current Watch and
Break conditions active. If a break condition (see 8.4.7 and 8.5.2 above) is
specified, it becomes active until Probe is next entered (and is then removed
from the list of break conditions). This is useful for getting quickly to an
area of the program to be examined in further detail.

example

G

g sort:

8.5.7 help

format

HELP command-nameop,

command-name.• one. of
Assign Ereak Calls Display
Echo Go Help Key
List Output Profile Quit

Route Step Trace View

Watch X Z

Information regarding the specified command is given, or if no command is
specified, a general description of Probe facilities is displayed. Commands
about which information is requested may be abbreviated when used as
parameters to HELP, in the same way as when using the commands
themselves. The help command requires the presence of the file
PROBE.HLP during execution.

examples

HELP

h w

~ 1-90 Section 8 - The symbolic debugger

8.5.8 key

format

KEY

By default, Probe operates in a way which allows the user to interrupt the
program under test at any time by striking any key. This command
alternately disables and enables this facility. It is mainly intended for
examining programs which themselves test the keyboard without executing
an input statement. In this case, keyboard events must be handled by the
program under test without interception by Probe. Note that programs
under test run significantly slower when keyboard interruption is enabled.

example

K

8.5.9 list

format

LIST qualifierop, lincsopl

The list command displays the specified source lines on the screen. If a
qualifier is given, it specifies the source file whose lines are to be displayed.
The qualifier must either be a source file name (as a character string) or a
currently active function name. If no line number is given then lines in the
vicinity of the current source line will be displayed. Subsequent lines
displayed by LIST with no parameter follow on from the preceding display.
If 'profiling' has been enabled (see 8.5.11), the execution counts are
displayed.

examples

L

list 23..40

L 'SOURCE': 1..20

Section 8 - The symbolic debugger 1-91

8.5.10 output

format

OUTPUT

The screen switching used to separate Probe's output from that of the
program under test is switched on or off. A message indicates the new
setting (enabled or disabled). The alternate screen is used for all output by
the program under test, and can be viewed using the VIEW command.

example

8.5.11 profile

format

PROFILE

The profiling option is switched on or off. A message indicates the new
setting (on or off). A 'profile' of a program is a listing of the frequency of
execution of each part of the program. When profiling is selected, Probe
maintains counts of the number of times each source line is executed. When
a subsequent LIST command is executed, the counts are displayed, along
with the line numbers and the source lines. The ECHO command can be used

to retain a copy of the listing for subsequent printing or analysis.

A profile is generally used to determine which parts of a program are most
frequently executed and therefore would best benefit from more efficient
coding. It can also be very useful in determining if a particular part of the
program has been executed at all.

example

~7 1-92 Section 8 - The symbolic debugger

8.5.12 quit

format

QUIT

Probe and the program under test are terminated immediately. This
command must be entered in full in order to take effect: abbreviations will

be rejected. Note that normal program termination does not take place; any
files opened by the program under test will be left open, and information
buffered within the runtime library will not be written to disk. Use of this
command can be dangerous when debugging certain programs, for example
when a GEM application has entered but not yet left 'wind_updatc' mode,
which will prevent the parent program (e.g. the Workbench or the GEM
Desktop) from functioning.

example

QUIT

8.5.13 route

format

ROUTE

The route command displays the most recently executed few source lines.
These include both lines which have been completely executed, and those
containing an active function call. Those whose execution has not completed
will also feature in the output of the CALLS command (see 8.5.3).

example

R

Section 8 - The symbolic debugger 1-93

8.5.14 step

format

STEP line-countopl

Execution of the program under test is resumed for the specified number of
lines. If no line-count is specified, a single line is executed. Nolo that only
lines on which an executable statement starts are counted. These are the lines

indicated by an asterisk on the compiler source listing (.PRN) file.

examples

S 5

8.5.15 trace

format

TRACE

The trace command is for use with a machine language debugger, such as
SID. It resumes execution of the program under test for one line (like the
Probe "S" command), but if SID (or another debugger) has been loaded, a
breakpoint is automatically inserted at the first instruction of the compiled
code for the current source line. Thus SID will be entered immediately, and
a SID "L" command will display the compiled machine code for the current
source line. SID can be used to view the compiled code, or step through the
program, instruction by instruction.

A frequent use of the trace command is to test a program including
assembler coded parts. A Probe breakpoint is set on the source line which
calls the assembler routine. When the program stops at this line, a TRACE
command is used to enter SID. The SID "T" command can be used to trace

execution through the assembler coded routine, or "G" can be used to re
enter Probe at the start of the next line.

Refer to the documentation supplied with SID or any other debugger for
details of its use. See also section 8.3.4 above.

example

X SID MYPROG.PRG

G

G 18

T /* Enter SID at start of line 18 */

1-94 Section 8 - The symbolic debugger

8.5.16 view

format

VIEW

The VIEW command may be used to observe the alternate screen (to which
output from the program under test is directed) when screen switching is in
use. Pressing any key returns to the Probe screen. See the description of the
OUTPUT command in 8.5.10 above.

example

V

8.5.17 watch

format

WATCH break-watch-specifieropl
WATCH ?

WATCH -

The watch command sets up a condition to be monitored whereby
information is displayed whenever the specified circumstance holds during
execution of the program under test. The display consists of the source line,
and, if a variable was specified, its value and up to twenty characters of the
original watch command. If no parameter is specified to the watch
command, then every source line is displayed as it executes. "WATCH -"
removes all current watch conditions. "WATCH ?" displays all current
watch conditions. Possible conditions include execution of lines in a
particular function or source file, changes in a variable, or variable changes
satisfying a condition.

Any number of watch and break requests can be active at the same time. In
this case, the overall display reflects the combination of all the current
requests. See 8.5.2 above for other points applicable to both WATCH and
BREAK.

examples

W

W SAMPLE: 120 . .150
W i

w index >= 99

W -

" Section 8 - The symbolic debugger 1-95

8.5.18 X (execute)

format

Xfilename command-tailopt

The execute command allows any other program to be executed from Probe
(provided sufficient memory and other resources are available). On
completion of the command, the Probe prompt (>>) will reappear. The "X"
command is useful for calling up editors and so on, without disturbing the
state of the program being tested. If the command is used to initiate another
program compiled with the N option, Probe facilities will only be available
within that program if there is no program currently under test. If no
filename extension is given, Probe supplies the extension .PRG.

examples

X GEMDEMO

x C-BENCH

8.5.19 Z (hexadecimal display)

format

Z value

The hexadecimal display command allows any value to be displayed in
hexadecimal. This is useful for determining the values of variables with bit-
significant values, where the decimal value is hard to decode. It can also be
useful for displaying the addresses of variables, for example when a pointer
is supposed to be pointing to an array.

examples

Z Sbuffer

Z bufptr

1-96 Section 8 - The symbolic debugger

8.6 Command syntax summary

Each command to Probe consists of a command name, possibly followed by
a parameter or parameters. In fact, only the first letter of the command
name is significant, and the complete name is only of use to help remember
the function of the command. The only exception to this is the QUIT
command, which must be typed in full to take effect. The parameters of
some commands may be preceded by a "qualifier", which names a source
program file or function name to which the command applies. The syntax
for references to variables or constants follows that of the source language
quite closely.

The syntax of commands to Probe is:

command: one of
assign-command break-command calls-command
display-command echo-command go-command
help-command key-command list-command
output-command profile-command quit-command
route-command step-command trace-command
view-command watch-command execute-command
hexadecimal-command

assign-command: ASSIGN qualifieropt variable = value
break-command: BREAK break-watch-specifierop,

BREAK ?

BREAK -

calls-command: CALLS

display-command: DISPLAY qualifieropl variableop,
echo-command: ECHO

go-command: GO break-watch-specifieropl
help-command: HELP command-nameop,
key-command: KEY
list-command: LIST qualifierop, linesopl
output-command: OUTPUT
profile-command: PROFILE
quit-command: QUIT
route-command: ROUTE

step-command: STEP line-county
trace-command: TRACE

view-command: VIEW

watch-command: WATCH break-watch-specifierop,
WATCH ?

WATCH -

execute-command: Xfilename command-tailopl
hexadecimal-command: Z value

Section 8 - The symbolic debugger

break-watch-specifier:
qualifieropt break-watch-conditionop,

break-watch-condition:

lines

variable

variable op value
qualifier:

file-name :
function-name :

variable:

identifier
variable [value]
variable .fieldname
variable ->

* variable

value:

variable

constant

& variable

lines:

integer-constant
integer-constant . . integer-constant

line-count:

integer-constant
constant :

integer-constant
floating-constant
string-constant

op: one of
! = < > = < =

function-name:
identifier

file-name:
' identifier '

fieldname:
identifier

string-constant:
" s-char-sequenceop,"

command-name: one of
Assign Break
Echo Go

List Output
Route Step
Watch X

Calls

Help
Profile

Trace

Z

Display
Key
Quit

View

1-97

~7 1-98 Section 9 - The cross referencer

9 THE CROSS-REFERENCE GENERATOR

A cross-reference generator CXREF is provided as part of the Prospero C
package. It is a very useful facility when developing or maintaining
programs of any size, and is tailored to the Prospero C syntax. All source
identifiers are listed in alphabetical order, together with the source line(s)
on which they are referenced. If header files are included, they are allocated
sequential numbers starting at 1, and the report uses these numbers to refer
to the included files.

9.1 Operation from the Workbench

The CXREF program is selected by the Cross reference option at the
bottom of the Compile menu. Upon selection, the File Selector is used to
obtain the name of the source file to be cross-referenced. The cross
reference options are then specified using the following form :

Cross Reference

Source File :- GEMDEMO.C

Line Width :- 1BB|

Output to :- PRINTER

1 Cancel 1 OK

Two options may be altered - the line width for printout, and the destination
of the cross-reference listing. The cross reference listing will be sent either
directly to the printer, or to a disk file whose name is the same as the source
file, with the extension .XRF, or the listing file may optionally be
automatically loaded into a Workbench window on completion, if a window
is available. Clicking on the word PRINTER toggles between the three
options, and the text changes (in the above example) to GEMDEMO.KRF or
WINDOW as appropriate.

Section 9 - The cross referencer 1-99

9.2 Operation from the command-line

The cross-refence program CXREF.TTP may also be operated from the
command-line. In use, the CXREF is followed by the source filename (the
extension .C is added if no extension is specified), and optionally by a
printer line width and filename for output, separated by commas. If no
command-tail is specified, the user is prompted for each field. The default
printer width is 100, and the default output file is CON: (the screen). The
output file may also be a printer (PRN:).

For example,

CXREF

CXREF prime,,CON:
CXREF prime,80,PRN:

u
u

u
u

u
u

u

n
n

-

Contents

PART II - IMPLEMENTATION DETAILS

1 Introduction

1.1

1.2
Motorola processors
Operating system

Standard features

2.1

2.2

Data types
Statements

2.3

2.4

Expressions
Translation limits

2.5 Numerical limits

2.5.1 Sizes of integral types <limits.h>
2.5.2 Characteristics of floating types <float.h>

Input and output

2

2

2

3

4

4

5

3.1 Declaration of streams 6
3.2 File formats 6

3.2.1 Text files 6
3.2.2 Non-text files 6

3.3 Buffering 6

Storage allocation 8

Interfacing to assembler 10

10

10

10

10

11

13

14

14

15

15

5.1

5.2

Use of assembly language
Choice of assembler

5.3 XDEF/XREF linkage

5.4

5.3.1 Calling assembler from C
5.3.2 Calling C from assembler

External data
5.5

5.6

Preservation of registers
Parameters

5.7 Function results
5.8 Reserved section names

n

Section 1 - Introduction II-1

1 INTRODUCTION

The purpose of this section is to bring together a number of points relating to
the implementation of Prospero C on different hardware and/or operating
system environments.

1.1 Motorola processors

This implementation is for a microcomputer based on one of the Motorola
family of processors: MC68020, MC68010, MC68000 or MC68008.

The Workbench, compiler, linker and other supplied programs make use only
of instructions common to all processors in the family, and will therefore run
on any such microcomputer.

1.2 Operating system

This implementation is for Atari ST machines using the standard GEMDOS
(also known as TOS) operating system. Both the Workbench and object
programs can make use of the hierarchical file structure, so that a full
pathname can be specified anywhere that a filename is required.

~7 II-2 Section 2 - Standard features

2 STANDARD FEATURES

Prospero C is a complete implementation of the August 1987 draft of the
forthcoming ANSI C Standard. This section summarizes the standard features
and how they are implemented. Appendix H gives details of how Prospero C
implements various aspects of the language not mandated by the Standard.

2.1 Data types

Type Storage Range of values

signed char 1 byte -128..127

signed short 2 bytes -32768 .. 32767

signed int 2 bytes -32768 .. 32767

signed long 4 bytes -2147483648 ..2147483647

unsigned char 1 byte 0.. 255

unsigned short int 2 bytes 0 .. 65535

unsigned int 2 bytes 0.. 65535

unsigned long int 4 bytes 0 .. 4294967295

float 4 bytes 0, ±1.17549435e-38
.. 3.40282347e+38

double 8 bytes 0, ± 2.22507385850720le-308
.. 1.797693134862316e+308

long double 8 bytes same as double

void

All pointers occupy four bytes. There are no limitations (other than the
available memory) on the sizes of arrays or structures.

2.2 Statements

All the statements of Standard C are implemented:

expression-statement, compound-statement,
goto, continue, break, return,
if, switch, while, do, for.

2.3 Expressions

The following operators are available:

[] () • ->

++ -- & * + ~ ! sizeof

/ % « » < > <= >= == =

A

1 && || ?

=
* =

#

/= %=

##

+=
~—

«= »= & s= 1=

Section 2 - Standardfeatures II-3

2.4 Translation limits

Given sufficient memory Prospero C is capable of translating a single input
source file containing all of the following:

At least 15 nesting levels of compound statements, iteration control
structures, and selection control structures.

At least 10 nesting levels in conditional compilation (#if).

Greater than 12 pointer, array and function declarators modifying a basic
type.

At least 127 expressions nested by parentheses.

Arbitrary number of significant characters in an internal identifier or
macro name.

Macro bodies of any size

32 significant characters in an external name, case significant.

More than 511 external identifiers.

More than 127 identifiers with block scope in one block.

More than 1024 macro identifiers simultaneously defined.

More than 31 parameters in one function definition and call.

More than 31 parameters in one macro definition and invocation.

Up to 32767 characters in a logical source line.

Up to 32767 characters in a string literal.

No limit to the number of bytes in an object.

At least 10 nesting levels for #include files.

No limit to the number of case labels in a switch statement.

~7 II-4 Section 2 - Standard features

2.5 Numerical limits

The Prospero implementation of C has the following numerical limits.

2.5.1 Sizes of integral types <limits .h>

CHAR_BIT
SCHAR_MIN
SCHAR_MAX
UCHAR_MAX
CHAR_MIN
CHAR_MAX
SHRT_MIN
SHRT_MAX
USHRT_MAX
INT_MIN
INT_MAX
UINT_MAX
LONG_MIN
LONG_MAX
ULONG MAX

8

-128

+ 127

255U

see below

see below

-32768

+32767

65535U

-32768

+32767

65535U

-2147483648

+2147483647

4294967295U

max bits in smallest non-bit field object
min value of type signed char
max value of type signed char
max value of type unsigned char
min value of type char
max value of type char
min value of type short int
max value of type short int
max value of type unsigned short
min value of type int
max value of type int
max value of type unsigned int
min value of type long int
max value of type long int
max value of type unsigned long

When the U option is in force, the value of an object of type char does not
sign-extend when used in an expression, and the value of CHAR_MIN will be
zero, and CHAR_MAX will be the same as DCHAR_MAX. Otherwise, the
value of an object of type char does sign-extend when used in an expression,
and the value of CHAR_MIN and CHAR_MAX will be the same as those of
SCHAR MIN and SCHAR MAX.

Section 2 - Standard features II-5

2.5.2 Characteristics of floating types <float .h>

The characteristics of floating types are defined in terms of a model that
describes a representation of floating-point numbers and values that provide
information about an implementation's floating-point arithmetic.

The following describes the Prospero C floating-point representation, which
also meets the requirements for single-precision and double-precision
normalized numbers in the "IEEE Standard for Binary Floating-Point
Arithmetic"(ANSI/IEEE Std 754-1985).

Sizes of floating types:

FLT_
flt"

FLT_
dbl"

FLT_
dbl"

FLT_
dbl"

FLT_
dbl"

FLT_
DBL^

FLT_
dbl"

FLT_
dbl"

FLT_
DBL^
FLT_
dbl"

RADIX

"rounds

_MANT_DIG
~MANT_DIG
EPSILON

"epsilon

DIG

"dig

_MIN_EXP
"min_exp

MIN

[min
_MIN_10_EXP
"min_io_exp

_MAX_EXP
"max_exp

MAX

[max
_MAX_10_EXP
"MAX 10 EXP

2

1

24

53

Radix of exponent representation
Rounding mode (to nearest)

binary digits in mantissa

1.19209290E-07F minimum x such that 1.0+*> 1.0

2.2204460492503131E-16

6
15

-125

-1021

decimal digits in mantissa

minimum x such that 2*-; is

normalized.

1.17549435E-38F mimimum normalized +ve no.
2.225073858507201E-308

-37

-307

128

1024

+38

+308

minimum x such that 10* is

normalized.

maximum x such that 2*-1 is
representable.

3.40282347E+38F maximum representable no.
1.797693134862316E+308

maximum x such that 10* is

representable.

As long double and double share the same representation, the limits
and sizes for long double are as described for double above.

f II-6 Section 3- Input and output
3 INPUT AND OUTPUT

3.1 Declaration of streams

The standard predeclared streams stdin, stdout and stderr are always
available. There is no provision for a standard error handle under GEMDOS,
and therefore stderr is equivalent to stdout. In addition, Prospero C
defines two additional pre-opened streams stdaux (for input and output to the
serial port) and stdprn (for output to the printer). If using the unbuffered
file functions defined in io . h, handles 0, 1, 2 or 3 can be used to refer to the
standard input, output, auxiliary and printer handles respectively.

3.2 File formats

3.2.1 Text files

A text file (on disk) follows the standard GEMDOS convention that lines are
terminated by carriage-return / line-feed. Prospero C provides facilities on
input and output for translating between such files and the standard C
convention that lines are terminated by line-feed only. These are described
further in Volume 2 (Prospero C Library).

3.2.2 Non-text files

Non-text files can be read using the f read and f write functions, or using the
lower level unbuffered read and write functions. There is no limit to the
size of a file or of an object which can be read from a file.

3.3 Buffering

The functions in the C library for file handling fall into two distinct categories.
The header file stdio. h defines a set of functions for dealing with buffered
...wu, TviliyAn ua bllvalila, WHICH ai^. SpCCin^u ill UiC uiaii /\lNOi aianuaiu. me

functions in io. h are used for unbuffered access to files, so that the access is
only a little above the operating system level (or not at all, in the case of some
of the functions whose names begin with an underscore). The unbuffered file
i/o library and the header file io . h are not part of the draft ANSI standard.

I

Section 3 - Input and output II-7

When streams are opened for input, output or update, by default they are fully
buffered. Due to limitations of the Atari operating system, it is not possible to
distinguish an interactive device from a file stored on disk, so where the stream
in fact refers to an interactive device where full buffering may not be
appropriate, the program will have to alter the buffering mode after opening
the file (e.g., using setvbuf). The standard predefined streams are an
exception to this rule - standard output is always assumed to be a device and is
unbuffered, while standard input is assumed to refer to the console if the file
size returned by GEMDOS is zero. In this case, input will be line buffered, and
a line-feed will be echoed to the screen after each line is read.

7 H-8 Section 4- Storage allocation
4 STORAGE ALLOCATION

Object programs can in general contain requirements for the following kinds
of storage.

Program code.
Constants (literals).
Static data areas.

Stack/work area.

All objects declared as static or extern, or declared outside the scope of
any function are allocated static data space.

In the object code from the compiler, the static data for each module is located
on a word boundary. The stack is kept word-aligned throughout execution of
the program.

The result of compiling a C translation unit is a single module in relocatable
object format which consists of a number of "sections". There are up to five
sections generated:-

(1) .CODE, which contains object code and constants (integers, doubles,
strings, etc.). The code generated for the body of any one function cannot
exceed 32K bytes.

(2) .ATAB, which contains control information enabling run-time access to
external functions and data.

(3) .INIT, which contains control information (used by Prospero Fortran
modules) enabling the run-time initialization of COMMON blocks.

(4) .NAME, which by default contains just the main program's name. If the N
compile-time option is selected, it also contains the names of files and functions
compiled, for utilization in the event of a run-time error when producing a
function call trace-back, or by the symbolic debugger Probe (see Part I,
section 8).

(5) Each module's static data forms a section whose name is the same as the
source file name, without extension, preceded by the characters D$.

n

I

I

I

I

I

I

Section 4 - Storage allocation II-9

The user stack pointer SP is set to the highest address in the workspace area
plus one, and the stack "grows" from higher to lower addresses. Dynamically
allocated memory is taken from an area known as the heap, which grows from
lower to higher addresses. If at run-time the library finds that the stack and the
heap are about to collide, execution of the user program is terminated. The
program must be re-linked and re-run with a larger amount of workspace.

Depending on a program's requirements, extra memory areas may be
allocated dynamically at run-time by the library heap manager.

The detailed layout of a program in memory is as follows:-

The executable code image and the static data area are both in the text section
of the program file, and are loaded in to memory when the program is
executed. The memory immediately above the program file image is allocated
to the stack, the stack size being determined by a value in the program file
header, controlled by a linker option (see Part 1, section 5.2). The space above
this is released back to the operating system, but may be re-allocated by
requests for dynamic memory allocation using ma Hoc and equivalent
functions.

(increasing addresses •)

Library
header

User Code
Library

code

Static
Data

-#- Stack

Initial user SP

In addition, there is a further area allocated dynamically by the library,
containing global run-time information shared by the highest-level program
and its dependent child programs. The size of this area is a few hundred bytes.

7 II-10 Section 5- Interfacing to assembler
5 INTERFACING TO ASSEMBLER

5.1 Use of assembly language

To use machine features not available through the C language, routines may be
written in assembly language and combined with the generated code during the
link-edit process.

5.2 Choice of assembler

The C compiler generates relocatable object code. Assembler language
modules may be processed by any assembler which generates the same format,
and linked with the other components of the program. In particular, the GST
Macro Assembler will be found satisfactory.

5.3 XDEF/XREF linkage

5.3.1 Calling assembler from C

An assembler-coded routine can be called from C in the normal way by a
function call. In the assembler module, the name is quoted in an XDEF
directive, or made global in some equivalent way. More than one routine can
be in the module. Return is made by an RTS instruction or equivalent.

To make these remarks more specific, consider the C fragment:

extern int funca(double x, double y);

main ()

{

funca(xcoord, ycoord);

}

The assembler code for a routine funca or FUNCA (the linkage is case-
insensitive) which is called in this way should be structured as shown below.

Section 5 - Interfacing to assembler

* C calling assembler

FUNCA

XDEF FUNCA

SECTION .CODE

MOVEA.L 4(SP),A0
MOVEA.L 8(SP),A1

RTS

Get address of argument Y
Get address of argument X

Return to C

11-11

5.3.2 Calling C from assembler

A C function not declared as static can be called from assembler code. The

function name must be quoted in an XREF directive (or equivalent), and called
by a BSR.L instruction (this assumes that the distance between the BSR and the
called routine is expressible as a long BSR operand; if this is not the case,
another technique must be used which is explained below). If the function
requires arguments (see 5.6) they must be pushed on the stack before the call,
and removed after it.

To make these remarks more specific, consider the C fragment:

int funcc (int
{ int result;

ci, int *j)

return result;

}

The assembler code for a routine which calls function funcc should be

structured as shown below. In particular, in the large program example, the
.ATAB section name must be used, so that code base addresses will be
relocated correctly.

11-12 Section 5 - Interfacing to assembler

* Assembler calling C (small program example)

XREF FUNCC

SECTION .CODE

PEA I

PEA J

BSR FUNCC

I DS.L 1

J DS.L 1

; Note that linker ignores case
; (as do most assemblers)

Set up funcc's arguments on stack

Direct call to C function

(funcp must be within 32K bytes of this BSR)

* Assembler calling C (large program example)

* This linkage can always be used, but must be used if the
* distance between the calling and target routines exceeds 32K
* bytes.

XREF.L FUNCC

XREF .ATABS

SECTION .ATAB

JMPFNCC JMP FUNCC

SECTION .CODE

(The .L is essential!)

.ATABS is a reserved public symbol

.ATAB is a reserved section name

Direct 6-byte jump to FUNCC

PEA

PEA

JSR

Set up FUNCC's arguments on stack
I

J

JMPFNCC-.ATABS(A4) Indirect call to FUNCC

(A4 contains the address of .ATAB at run-time)

DS.L 1

DS.L 1

Section 5 - Interfacing to assembler II-13

5.4 External data

C objects which have been declared as extern can be referenced from
assembler code as shown below. The use of section .ATAB is necessary in
order that program initialization can relocate the external data address at run
time.

In the general case, the assembler declarations must describe the layout of the
C external object. Section 2.1 gives details of storage layout for different data
types.

As an example, the following might appear in a C program:

extern struct time { char hours, mins, sees; } timer;

main ()

{ ...
printf("%d:%d:%d \n",

timer.hours, timer.mins, timer.sees);

The method of accessing the object timer is as follows

*

* Accessing an external object

XREF .ATABS

* (.ATABS is a reserved public symbol defining
* the start of section .ATAB)

* Layout of struct time

HOURS EQU 0

MINS EQU 1

SECS EQU 2

SECTION .ATAB .ATAB is a reserved section name

ATIMER DC.L TIMER + $4000000 Address of TIMER at run-time

SECTION .CODE

MOVEA.L ATIMER-. ATABS (A4) ,A0 Get base addr of TIMER

* (A4 contains the address of .ATAB at run-time)

MOVE.B HOURS(A0),DO Get contents of HOURS

~7 11-14 Section 5 - Interfacing to assembler

5.5 Preservation of registers

The generated C code depends upon the contents of registers A3 to A6 being
unchanged on return from a function. Assembler-coded functions must
conform with these requirements. On return, the parameters must not have
been removed from the stack.

5.6 Parameters

When a function has arguments, these are pushed onto the stack prior to the
call. The first argument is pushed last, and so is nearest to the return link (and
at the lowest address) on entry to the function.

Link Pi P2 p3

(increasing addresses •)

SP

On return, the link must have been removed, but not the parameters.

Values of scalar types (see Part III, section 3) occupy 1, 2, 4 or 8 bytes (see
section 2 above for details). The corresponding number of bytes is pushed onto
the stack, except that a 1-byte value is passed by pushing a pair of bytes (with
the value in the low-addressed byte of the pair). Note however that if no
prototype is in force when the function is called, the default argument
promotions will have been made (see Part III, section 7.3.2.1). In the case of 4-
or 8-byte values, the high-addressed word is pushed first followed by the
lower-addressed word(s).

Structure value parameters are passed by making a copy of the structure on the
stack. Note that an object of type array or function will be converted to a
pointer to array or function before being passed, and so a four-byte pointer
will be pushed onto the stack.

Section 5 - Interfacing to assembler H-15

5.7 Function results

Functions returning integer types return the result in register DO. Functions
returning pointer types return the result in register AO. Functions returning
floating point types return the result in an area of library workspace known as
the floating point accumulator. If a function returns an aggregate type, the
caller passes an additional "hidden" parameter on the stack before the actual
parameters are passed. The extra parameter is the address of a location in the
caller's data space that is to receive the function result.

5.8 Reserved section names

The section names .CODE and .ATAB and public symbol .ATABS are
reserved and should only be used as shown by the examples above. The section
names .INIT, .NAME, .ENTRY and .LWT are also reserved and must not be
used by any assembler routine under any circumstances.

u

n
n

n
n

Contents

PART III - LANGUAGE DEFINITION

1 Introduction 1

1.1 Notation 1

2 Environment 2

2.1 Program structure 2
2.2 Translation phases 2
2.3 Character sets 4

2.3.1 Source and target character sets 5
2.3.2 Trigraph sequences 5

3 Object types and conversions 6

6

8

8

10

12

12

13

14

14

14

15

16

16

18

19

20

21

22

22

23

24

25

28

28

29

31

32

32

32

3.1 Object Types
3.2 Conversions

3.2.1 Characters and integers
3.2.2 Signed and unsigned integers
3.2.3 Floating and integral
3.2.4 Floating types

3.3 Usual arithmetic conversions

3.4 Other operands
3.4.1 Lvalues and function designators
3.4.2 void

3.4.3 Pointers

Object names and scopes

4.1 Scopes of identifiers
4.2 Linkages of identifiers
4.3 Name spaces of identifiers
4.4 Storage durations of objects

Lexical elements

5.1 Keywords
5.2 Identifiers

5.3 Constants

5.3.1 Floating constants
5.3.2 Integer constants
5.3.3 Enumeration constants

5.3.4 Character constants

5.3.5 Escape sequences
5.4 String literals
5.5 Operators
5.6 Punctuators

5.7 Comments

Contents

6 Dec larations 33

6.1 Type specifiers 34

6.2 const and volatile 36

6.3 struct and union specifiers 37

6.3.1 Structure and union tags 40

6.4 Enumeration specifiers 42

6.5 Storage-class specifiers 43

6.6 Declarators 45

6.6.1 Pointer declarators 46

6.6.2 Array declarators 47

6.6.3 Function declarators 48

6.6.4 Type names 50

6.6.5 Type definitions and type equivalence 51

6.7 Function definitions 53

6.8 Initialization 55

6.8.1 Initializing arrays, structs and unions 56

6.9 External definitions 59

6.9.1 External object definitions 60

7 Exp ressions 61

7.1 Precedence of operators 62

7.2 Primary expressions 63

7.3 Postfix operators 64

7.3.1 Array subscripting 64

7.3.2 Function calls 65

7.3.4 Postfix increment and decrement operators 69

7.4 Unary operators 70

7.4.1 Prefix increment and decrement operators 70

7.4.2 Address and indirection operators 71

7.4.3 Unary arithmetic operators 72

7.4.4 The sizeof operator 73

7.5 Cast operators 1A

7.6 Multiplicative operators 75

7.7 Additive operators 76

7.8 Bitwise shift operators 78

7.9 Relational operators 79

7.10 Equality operators 80

7.11 Bitwise AND operator 81

7.12 Bitwise exclusive OR operator 81

7.13 Bitwise inclusive OR operator 81

7.14 Logical AND operator 82

7.15 Logical OR operator 82

7.16 Conditional operator 83

Contents

7.17 Assignment operators 84

7.17.1 Simple assignment 84

7.17.2 Compound assignment 85

7.18 Comma operator 86

7.19 Constant expressions 86

8 Statements 88

8.1 Labelled statements 88

8.2 Compound statement, or block 88

8.3 Expression and null statements 90

8.4 Jump statements 90

8.4.1 The goto statement 91

8.4.2 The continue statement 91

8.4.3 The break statement 92

8.4.4 The return statement 92

8.5 Selection statements 94

8.5.1 The if statement 94

8.5.2 The switch statement 94

8.6 Iteration statements 96

8.6.1 The while statement 96

8.6.2 The do statement 96

8.6.3 The for statement 97

9 The Preprocessor 98

9.1 Introduction 98

9.2 Preprocessing directives 98

9.3 Defining a macro 99

9.3.1 Redefining a macro name 100

9.3.2 Scope of macro definitions 100

9.3.3 Macro replacement 101

9.3.4 Argument substitution 102

9.3.5 Rescanning and further replacement 102

9.3.6 The # operator 104

9.3.7 The ## operator 105

9.4 Conditional inclusion 106

9.4.1 Evaluating constant expressions 107

9.5 Source file inclusion 108

9.6 Line control 110

9.7 Error directive 110

9.8 Pragma directive 111

9.9 Null directive 111

9.10 Predefined macro names 111

9.11 Preprocessor syntax summary 113

10 Bibliography 115

11 Index 116

Section 1 - Introduction III-1

1 INTRODUCTION

This manual documents the C language as implemented in Prospero C. The
implementation adheres to the draft ANSI C standard (3 August 87).

The C language is a general purpose programming language. It has been
designed to allow both efficient, perhaps machine specific, and portable
programs to be written.

When creating the draft ANSI C standard, the standardization committee
aimed to preserve the traditional spirit of C. The rationale to the draft standard
enumerates the following facets of this spirit:

Trust the programmer.
Don't prevent the programmer from doing what needs to be done.
Keep the language small and simple.
Provide only one way to do an operation.
Make it fast, even if it is not guaranteed to be portable.

This manual is intended as a guide to knowledgeable programmers and is not
intended to act as an introduction or tutorial to the language.

This manual specifies:

The representation of C programs.
The syntax of the C language.
The semantic rules for interpreting C programs.
The restrictions and limits imposed by the language standard.
The restrictions and limits imposed by this implementation.

1.1 Notation

The following notational conventions are used throughout this manual:

Bold courier font for C keywords and program fragments.
Italicfont for C syntax
Courier font for C program examples.
Thingopt indicates that 'Thing' is optional.

* IH-2 Section 2 - Environment

2 ENVIRONMENT

2.1 Program structure

A C program consists of one or more source files. Each source file must be
independently processed by the compiler.

A source file together with all the headers and source files included via the
preprocessing directive #include, less any source lines skipped by any of
the conditional inclusion preprocessing directives, is called a translation unit.

2.2 Translation phases

The process of turning C source text into an executable file can be considered
to occur in a series of phases. Note that these stages are in general purely
conceptual, and do not take the form of separate 'passes' of the compiler - they
simply serve to define the order in which characters are converted into tokens,
and therefore clarify such points as whether adjacent string literals separated
by a comment would be concatenated (yes, as the comment would be replaced
by a space character in phase 4, and the literals would therefore be adjacent in
phase 6).

The phases are as follows :-

1. Physical source file characters are mapped to the source character set
(introducing new-line characters for end-of-line indicators). Trigraph
sequences (see section 2.3.2) are replaced by their corresponding single-
character internal representation.

2. Each instance of a new-line character and an immediately preceding
backslash character is deleted, splicing physical source lines to form
logical source lines. A source file that is not empty must end in a new-line
character, which must not be immediately preceded by a backslash
character (thus lines may not be continued across include files and the last
character in a non-empty file must be a newline).

3. The source file is decomposed into preprocessing tokens and sequences of
white-space characters (including comments). A source file must not end
in a partial preprocessing token or comment. Each comment is replaced
by one space character. New-line characters are retained. Multiple white-
space characters are replaced by a single white-space character (the
process of dividing a source file's characters into preprocessing tokens is
context-dependent, in the case of < on a #include preprocessing
directive line).

4. Preprocessing directives are executed and macro invocations are
expanded. A #include preprocessing directive causes the named

Section 2 - Environment IH-3

header or source file to be processed from phase 1 through phase 4,
recursively.

5. Escape sequences in character constants and string literals are converted
to single characters in the execution character set.

6. Adjacent string literals are concatenated.

7. White-space characters separating tokens are no longer significant.
Preprocessing tokens are converted into (normal) tokens. Unsuccessful
conversion of a preprocessing token generates a syntax error. The
resulting tokens are syntactically and semantically analyzed and
translated.

8. All external object and function references are resolved, i.e., the object
code is linked to produce an executable program.

Phases 1 to 6 represent the behaviour of the preprocessor, described in greater
detail in section 9. Phase 7 is the responsibility of the remainder of the first
pass of the compiler, while the second pass of the compiler and the linker
complete phases 7 and 8.

~7 III-4 Section 2 - Environment

2.3 Character sets

The following characters are in the source and target character sets:

The 52 lower-case and upper-case letters of the English alphabet:

abcdefghij kl m
nopqr st uvwxyz
ABCDEFGHI J KLM

NOPQRSTUV WX Y Z

The 10 decimal digits:

0 123456789

The 29 graphic characters:

! exclamation point semi-colon
" double quote < less than

hash, or number sign > greater than
% percent = equal
& ampersand ? question mark
1 single quote t left bracket

(left parenthesis] right bracket
) right parenthesis / slash
* star A circumflex

+ plus underscore

- minus { left brace

j comma } right brace
. period 1 vertical bar

\ backslash

colon

tilde

The space character, and control characters representing horizontal tab (HT),
vertical tab (VT), and form feed (FF). The end-of-line indicator (new-line
character) has the value ASCII 10. The carriage return character has the value
ASCII 13.

Any other characters encountered in a source file (except in a preprocessing
token, a character constant, a string literal, or a comment), produce illegal
tokens.

The space character, horizontal tab (HT), vertical tab (VT), and form feed
(FF), are collectively known as white-space characters.

~ Section 2 - Environment III-5

2.3.1 Source and target character sets

C allows a distinction to be made between the character set used to write the

program (source character set) and the character set used in the execution
environment that runs the program (target character set). It is possible that the

, internal encoding of the character sets be different in the two cases. This might
occur if a cross compiler were used to compile programs for another
processor. In Prospero C this does not occur.

2.3.2 Trigraph sequences

The trigraph sequences enable the input of characters that may not apppear on
some keyboards. These characters are also defined in the "ISO 646-1983"
Invariant Code Set, which is a subset of the seven-bit ASCII code set.

All occurrences in a source file of the following sequences of three characters
are replaced with the corresponding single character.

Trigraph Replaced by

? ? = #
? ? ([
? ?)]
? ?/ \
? ?< {
? ?> }
9 •> 1 1
•> •> > A

•> •> - **

There are no other trigraph sequences. Each ? that does not begin one of the
trigraphs listed above is not altered.

The following source line:

printf("??'???/??/");

becomes (after replacement of the trigraph sequences ?? ' and ??/)

printf("A?\\");

~7 III-6 Section 3 - Object types and conversions

3 OBJECT TYPES AND CONVERSIONS

A type defines theset of values thatan object maytake. Every typehasa setof
operations thatmaybe performed on its values. Thereare three classesof type:

Types that designate objects (object types).

Types that designate functions (function types).

Types that designate objects but lack the information neededto determine
their contents (incomplete types).

3.1 Object types

Characters, integers, and floating-point numbers are collectively called the
basic types.

character An object large enough to store any memberof the execution
character set.

integer There are four types of signed integers, signed char,
short int, int and long int.

A signed char occupies the same amount of storage as a
plain char. A. plain int has the natural size suggested by
the architecture of the execution environment for efficient
execution. The other types meet specific minimum limits as
given in <limits .h>. See appendix G.

For signed char and each type of int, there is a
corresponding unsigned type that utilizes the same
amount of storage (including the sign bit). The range of non-
negative values of a signed type is a subrange of its
corresponding unsigned type, and the representation of the
same value in each type is the same. A computation involving
unsigned operands can never overflow, because a result that
cannot be represented by the resulting unsigned type is
reduced modulo the number that is one greater than the
largest value that can be represented by the resulting
unsigned type. Unsigned types follow the same alignment as
signed types.

floatingpoint There are three floating-point types, called float,
double and long double. The set of values of a
float is a subset of the set of values of a double; the set
of values of a double is a subset of the set of values of a
long double. In Prospero C, double and long
double are implemented as the same representation.

Section 3 -Object types and conversions III-7

enumeration An enumeration comprises a set of named integer constant
values. Each distinct enumeration comprises a different
enumerated type.

void The void type specifies an empty set of values.

aggregates An aggregate is constructed from thebasic, enumerated, and
incomplete types. The resulting type is called a derived type.

arrays comprise a contiguously allocated set of
members of any one type of object.

structures comprise a sequentially allocated set of named
members of various types of object.

unions comprise an overlapping set of named members
of various types of object.

functions accept arguments of various types and have a
return type of any one incomplete or object type
except array or function.

pointers to functions, to objects of any type, and to
incomplete types.

These methods of constructing derived types can be applied
recursively.

Types char and int (of all sizes), both signed and unsigned, and
enumerations are collectively called integral types.

Types float, double and long double are collectively calledfloating
types.

Integral and floating types are collectively called arithmetic types.

Arithmetic types and pointers are collectively called scalar types.

Arrays and structures are collectively called aggregate types.

An array of unknown size is an incomplete type. It is completed, for an
identifier of that type, by specifying the size in a later declaration (with
internal or external linkage).

A structure, union, or enumeration of unknown content is an incomplete type.
It is completed, for all declarations of that type, by declaring the same
structure, union, or enumeration tag with its defining content later in the same
scope.

III-8 Section 3 -Object types and conversions

Function types do not exist in themselves. A definition of a function creates an
identifier of function type. When referred to in an expression, this identifier
may cause a sequence of statements to be executed, or the address of the code
for those statements to be assigned or compared.

See section 6 for fuller details of type declarations.

3.2 Conversions

Several operators convert operand values from one type to another
automatically (implicit conversions). This section specifies the result obtained
from such an implicit conversion, as well as those obtained from an explicit i
conversion.

3.2.1 Characters and integers

A char, a short int or an int bit-field, or their signed or unsigned
varieties, or an object that has enumeration type, may be used in an expression ,
wherever an int may be used. If an int can represent all values of the
original type, the value is converted to an int; otherwise it is converted to an
unsigned int. These are called the integral promotions.

Integral Promotions '

Original type Promoted type i
signed char int
unsigned char int
short int

unsigned short int, if short is narrower than int
unsigned, if short is as wide as int

int : N int

unsigned : N int, if N < no. bits in int :
unsigned, if N = no. bits in int

The integral promotions preserve value including sign. Whether a plain char
is treated as signed is dependent on the compiler U option.

Section 3 -Object types and conversions III-9

Effects of conversions

From To Effect

signed char short sign extend
signed char long sign extend
signed char unsigned char no representation change

-128..-1 maps to 127..255
signed char unsigned short sign extend to short, change

to unsigned
signed char unsigned long sign extend to long, change

to unsigned long
short signed char preserve low order byte

(possible truncation)
short unsigned char preserve low order byte

(possible truncation)
long signed char preserve low order byte

(possible truncation)
long unsigned char preserve low order byte

(possible truncation)
unsigned char signed char no representation change

127.. 255 maps to-128..-1
unsigncid char short zero extend

unsigneid char long zero extend

unsigned char unsigned short zero extend
unsigned char unsigned long zero extend
unsigned short signed char preserve low order byte

(possible truncation)
unsigned short unsigned char preserve low order byte

,possible truncation)
unsigned long signed char preserve low order byte

(possible truncation)
unsigned long unsigned char preserve low order byte

(possible truncation)

f III-10 Section 3 -Object types and conversions
3.2.2 Signed and unsigned integers

When an unsigned integer is convertedto another integral type, if the value can
be represented by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer of equal or greater
length, if the value of the signed integer is non-negative, its value is unchanged.
Otherwise:

If the unsigned integer is longer, the signed integer is first promoted to a
signed integer of the same length as the unsigned integer.

The value is converted to unsigned by adding to it one greater than the
largest number that can be represented in the unsigned integer type.

In a two's-complement representation, as used by Prospero C, there is no
actual change in the bit pattern except filling the high-order bits with copies of
the sign bit if the unsigned integer is longer.

When an integer is demoted to a shorter unsigned integer, the result is the non-
negative remainder on division by the number one greater than the largest
unsigned number that can be represented in the shorter type. When an integer
is demoted to a shorter signed integer, or an unsigned integer is converted to a
signed integer of equal length, if the value is outside the representable range of
the target type, the least significant bits of the value are used to produce the
result:

e.g., 0x3f f f f f f (signed long) converted to signed int yields
Oxffff or -1, converted to unsigned int yields Oxf f f f or 65535.

Section 5 - Interfacing to assembler H-l 1
5 INTERFACING TO ASSEMBLER

5.1 Use of assembly language

To use machine features not available through the C language, routines may
be written in assembly language and combined with the generated code
during the link-edit process.

5.2 Choice of assembler

The C compiler generates relocatable object code. Assembler language
modules may be processed by any assembler which generates the same
format, and linked with the other components of the program. In particular,
the GST Macro Assembler will be found satisfactory.

5.3 XDEF/XREF linkage

5.3.1 Calling assembler from C

An assembler-coded routine can be called from C in the normal way by a
function call. In the assembler module, the name is quoted in an XDEF
directive, or made global in some equivalent way. More than one routine
can be in the module. Return is made by an RTS instruction or equivalent.

To make these remarks more specific, consider the C fragment:

extern int funca(double x, double y);

main ()

{

funca (xcoord, ycoord) ;

}

The assembler code for a routine funca or FUNCA (the linkage is case-
insensitive) which is called in this way should be structured as shown below.

Steve
Note
This page is a duplicate of page from Part II. Some kind of printing mishap, but nothing seems to be missing from Part III despite the lack of a Part III page 11.

m-12 Section 3 -Object types and conversions

3.2.3 Floating and integral

When a value of floating type is converted to integral type, the fractional part
is discarded. If the value of the integral part cannot be represented in the space
provided, the behavior is undefined.

When a value of integral type is converted to floating type, if the value being
converted is in the range of values that can be represented but cannot be
represented exactly, the result is either the nearest higher or nearest lower
value.

Effects of conversions

From To Effect

any floating any integral discardfractional part and change to
point type type appropriate integral representation

(as if converted to unsigned long first)

any integral any floating representas floatingpoint value nearest to
type point type original value

3.2.4 Floating types

When a float is promoted to double or long double, or a double
is promoted to long double, its value is unchanged.

When a double or long double is demoted to float (in Prospero C a
long double is the same as a double, so there is no change between
these two), if the value being converted is outside therange of values that can
be represented, thebehavior is undefined. If thevalue being converted is in the
range of values thatcan be represented but cannotbe represented exactly, the
result is either the nearest higher or nearest lower value.

Effects of conversions

From
float

float

double

double

long double
long double

To

double

long double
float

long double
float

double

Effect
no loss of precision
no loss of precision
possible loss of precision and/or range
no change of representation
possible loss of precision and/or range
no change of representation

Section 3 -Object types and conversions III-13

3.3 Usual arithmetic conversions

The term usual arithmetic conversions refers to the process of converting the
operands of an operator to the same, defined type. The purpose of these
conversions is to reduce the possible combinations of operands that an operator
would actually have to operate on. The given type is also the type of the
resulting value (for most operators; see sections 7.7 to 7.18 for some
exceptions to this rule).

IF either operand has type long double,
the other operand is converted to long double.

ELIF either operand has type double,
the other operand is converted to double.

ELIF either operand has type float,
the other operand is converted to float.

ELIF either operand has type unsigned long int,
the other operand is converted to unsigned long int.

ELIF either operand has type long int,
the other operand is converted to long int.

ELSE the integral promotions are performed (see section 3.2.1),
after which

IF either operand has type unsigned int,
the other operand is converted to unsigned int.

ELSE both operands have type int.

111-14 Section 3 - Object types and conversions

3.4 Other operands

3.4.1 Lvalues and function designators

An lvalue is an expression (with an object type or an incomplete type other
than void) that designates an object.

The name lvalue comes originally from the assignment expression El = E2,
in which the left operand Elmust be a (modifiable) lvalue.

When an object is said to have a particular type, the type is specified by the
lvalue used to designate the object. A modifiable lvalue is an lvalue that:

Does not have array type.

Does not have an incomplete type.

Does not have a type declared with the const type specifier.

For a struct or union, does not have any member (including,
recursively, any member of all contained structures or unions) declared
with the const type specifier.

An lvalue that has type array oftype is converted to an expression that has type
pointer to type that points to the initial member of the array object and is not an
lvalue. This conversion does not occur when the lvalue is the operand of the
sizeof operator or the unary & operator, or is a string literal used to
initialize an array of characters.

A function designator is an expression that has function type. Except when it is
the operand of the sizeof operator or the unary & operator, a function
designator with type function returning type is converted to an expression that
has type pointer tofunction returning type.

3.4.2 void

The (nonexistent) value of a void expression void may not be used in any
way, and implicit or explicit conversions may not be applied to such an
expression. If an expression of any other type occurs in a context where a void
expression is required, its value is discarded.

I

7 Section 3 -Object types and conversions HI-15

3.4.3 Pointers

Apointer tovoid may be converted to a pointer to any incomplete or object
type. Apointer toany incomplete or object type may beconverted to apointer
to void andback again; the resultwill compare equal to the original pointer.

Anintegral constant expression with the value 0, or suchan expression cast to
type void *, is called a null pointer constant. If a null pointer constant is
assigned to orcompared for equality toa pointer, the constant isconverted toa
pointer of that type. The null pointer constant is guaranteed to compare
unequal to a pointerto any objector function.

~7 III-16 Section 4 -Object names and scopes

4 OBJECT NAMES AND SCOPES

In C, names may be given to objects (storage locations), types (an
interpretationof the operations that may be performedon an object), functions
(a collection of declarations and executable statements), macro names (a
mechanismfor giving a meaningful name to a sequence of tokens), and tags (a
sort of second class type concept).

There are rules for deciding which, if any, of these names are visible at a point
in the translation unit, whether it is possible to temporarily reuse a name
(scope and name space), how identical names may connect together (linkage),
and the period of time (relative to program execution) that storage is reserved
for names (of objects).

4.1 Scopes of identifiers

An identifier is visible (i.e., can be used) only within a region of program text
called its scope. There are four kinds of scope:

Block

File

Function

Function prototype

If a declaration or type name appears inside a block, or
within the list of parameter identifiers in a function
definition, the identifier has block scope. This scope
terminates at the } that closes the associated block.

If a declaration or type name appears outside any
block or list of parameters, it has file scope.

A label name is the only kind of identifier that has
function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is
declared implicitly by its syntactic appearance. Label
names must be unique within a function.

A function prototype is a declaration of a function that
declares the types of its parameters. If a declaration or
type name appears within the list of parameter
declarations in a function prototype (not part of a
function definition), the identifier has function
prototype scope, which terminates at the end of the
function declarator. Any outer declaration of an
identical identifier in the same name space is hidden
until the current scope terminates.

Section 4 - Object names and scopes 111-17

struct, union and enum tags have scope that begins just after the
appearance of the tag in a type specifier. Each enumeration constant has scope
that begins just after the appearance of the enumeration constant in an
enumerator list. Any other identifier has scope that begins just after the
completion of its declarator.

e.g.,

int i;

void fs(i)
long i;

{ /* ... */
{ float i;

/* ... */

}

}

/* global i */

/* introduces a new i */

/* introduces another i */

~~7 HI-18 Section 4 -Object names and scopes

4.2 Linkages of identifiers

Linkage is the name given to the process whereby two or more lexically
identical identifiers are made to refer to the same object or function.

There are three kinds of linkage:

External If the declaration of an identifier for an object or a function
contains the storage-class specifier extern, the identifier has
the same linkage as any in-scope declaration of the identifier
with file scope. If there is no in-scope declaration with file
scope, the identifier has external linkage. Also if the lexically
first declaration of an identifier (declared as an object or
function) with file scope in the translation unit does not have a
storage-class specifier given, it has external linkage. In the set of
translation units that constitutes a complete program, each
instance of a particular identifier with external linkage denotes
the same object or function.

Internal If the lexically first declaration of an identifier (declared as an
object or function) with file scope in the translation unit contains
the storage-class specifier static, the identifier has internal
linkage. Within one translation unit, each instance of an
identifier with internal linkage denotes the same object or
function.

None Identifiers with no linkage denote unique entities. The following
identifiers have no linkage:

An identifier declared to be anything other than an object
or a function.

An identifier declared to be a function parameter.

An identifier declared to be an object inside a block without
the storage-class specifier extern.

If an identifier declared with external linkage is used in an expression (other
than as part of the operand of a sizeof operator, which is evaluated at
compile time), somewhere in the entire program there must be exactly one
external definition for the identifier (a declaration that has external linkage
and for which storage is allocated).

If, within a translation unit, the same identifier appears with both internal and
external linkage, the behavior is undefined.

I

Section 4 -Object names and scopes HI-19

4.3 Name spaces of identifiers

In C the same identifier may be associated with up to 4 program entities at the
same time. This overloading of an identifier is resolved by examining the
syntactic context in which it occurs. Thus, there are separate name spaces for
various categories of identifiers:

Label names (differentiated by the syntax of the label declaration and
goto keyword).

Tags of structures, unions, and enumerations. They are differentiated by
the preceding struct, union or enum keyword. There is only one
name space for all tags.

Members of structures or unions. Each structure or union has a separate
name space for its members (differentiated by the type of the expression
used to access the member via the . or -> operator).

All other identifiers, called ordinary identifiers (i.e., variable and
function names, enumeration constants, typedef names and function
parameters).

Macro names. These are handled at the lexical level and are not part of the
C syntax.

It is illegal to have more than one identically named identifier in the same name
space, in any one scope. The one exception to this rule is the forward
declaration of tags - see section 6.3.1.

An example illustrating these points is :-

struct dup { /* tag */

int dup; /* member */

} dup ; /* ordinary identifier */

if (dup.dup == 1)
goto dup; /* label */

{ /* a different scope */

int dup = 1;
struct dup {

float dup;

} x;

dup :

}

/* */

IH-20 Section 4 -Object names and scopes

4.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are two
classes of storage duration:

static An object declared with static storage duration is created and
initialized only once, prior to program startup. It exists and retains
its last-stored value throughout the execution of the entire
program. All objects with external linkage have static storage
duration.

auto A new instance of an object declared with automatic storage
duration is created, in theory, on each normal entry into the block
in which it is declared. In practice Prospero C allocates sufficient
space on entry to the function to accommodate the largest storage
requirement. If an initialization is specified, it is performed on each
normal entry, but not if the block is entered by a jump to a label.
The object is discarded when execution of the block ends in any
way.

Section 5 - Lexical elements 111-21

5 LEXICAL ELEMENTS

A token is the minimal lexical element of the language. The categories of
tokens are:

keywords

identifiers

constants

"string literals"

operators

punctuators

White-space, and comments are ignored except as they separate tokens. White
space may appear within a token only as part of a character constant or string
literal, i.e., it is significant.

Each keyword, identifier, or constant must be separated by some white space
from any otherwise adjacent keyword, identifier, or constant.

The program fragment OxG is parsed as an invalid token, even though a valid
parse might be obtained if the identifier x, or G, previously defined as a macro
name, were replaced by its macro definition (for example, if x were defined as
+). Similarly, the program fragment OxF is parsed as a (valid) hex constant
token, whether or not x, or F, is a macro name.

If the input stream has been parsed into tokens up to a given character, the next
token is the longest sequence of characters (not separated by white-space) that
could constitute a token.

The program fragment x+=++y is parsed as x

token:

keyword
identifier
constant

string-literal
operator
punctuator

+= ++ y.

<r 111-22 Section 5 - Lexical elements

5.1 Keywords

The following tokens (entirely in lower-case) are reserved (in translation
phases 5 through 8) for use as keywords, and may not be redeclared as objects:

auto double int struct

break else long switch

case enum register typedef
char extern return union

const float short unsigned
continue for signed void

default goto sizeof volatile

do if static while

A Prospero C extension reserves the words (when the S option is off):

fortran pascal

5.2 Identifiers

An identifier denotes an object, a function, or one of the following entities that
will be described later:

a tag or a member of a structure, union, or enumeration,

a typedef name,

a label name,

a macro name.

Macro names are not considered further here, because prior to the semantic
nhase of nrnorflm franctatinn qnv npnurrpnppc r»f mafrn names in ^he QO"TV>'*

file are replaced by the token sequences that constitute their macro definitions.
Refer to section 9 for further details.

The case of letters is significant in determining if two identifiers are the same,
e.g., abc, ABC, AbC are different from each other.

Names may be both internal and external. There is no limit on the length of
internal names. The maximum number of significant characters in an internal
name is 31. External names, i.e., those names imported or exported to other
translation units, have a limit of 31 significant characters, and the linker does
not treat case as significant.

I

Section 5 -Lexical elements HI-23

identifier:
non-digit
identifier non-digit
identifier digit

non-digit: one of
abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM

NOPQRSTOVWXYZ

$ (unless S option is specified)

digit: one of
0123456789

An identifier is a sequence of non-digit characters (including the underscore _
and the lower-case and upper-case letters) and digits. The first character must
be a non-digit character.

An identifier occurring in translation phases 7 and 8 may not consist of the
same sequence of characters as a keyword. It is possible to define a macro
name that has the same spelling as a keyword.

The following are all valid identifiers:

L0 01 _bufptr WHILE array integer
Number Of Elements

5.3 Constants

Each constant has a type, determined by its form and value, see sections 5.3.1
and 5.3.2

constant:

floating-constant
integer-constant
enumeration-constant

character-constant

7 111-24 Section 5 -Lexical elements
5.3.1 Floating constants

A floating constant has a value part that may be followed by an exponent part
and a suffix that specifies its type.

The digit sequences are interpreted as decimal integers. The exponent indicates
the power of 10 by which the value part is to be scaled.

An unsuffixed floating constant has type double. If suffixed by the letter f
or F, it has type float. If suffixed by the letter 1 or L, it has type long
double.

The following are all valid floating point constants:

1.0e36 12e6L .618 .01e-9 3.14159f

42. 012e4

floating-constant:
fractional-constant exponentopt floating-suffixopt
digit-sequence exponent floating-suffixopt

fractional-constant:
digit-sequence , . digit-sequence
digit-sequence .

exponent:

e signopl digit-sequence
E signopt digit-sequence

sign: one of
+

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f 1 F L

I

Section 5 - Lexical elements IH-25

5.3.2 Integer constants

An integer constant begins with a digit, and does not contain a period or
exponent part. It may have a prefix that specifies its base and a suffix that
specifies its type.

Decimal constant Starts with a non-zero digit and consists of a sequence
of decimal digits.

Octal constant Starts with the prefix 0 optionally followed by a
sequence of the digits 0 through 7 only.

Hexadecimal constant Starts with the prefix Ox or Ox followed by a
sequence of the decimal digits and the letters a (or A)
through f (or F) representing values 10 through 15
respectively.

The value of a decimal constant is computed base 10; that of an octal constant,
base 8; that of a hexadecimal constant, base 16.

The type of an integer constant is the first of the following list in which its
value can be represented.

Unsuffixed decimal:

int, long int, unsigned long int

e.g.,
1 int

80000 long int
300000000 unsigned long int

Unsuffixed octal or hexadecimal:

int, unsigned int, long int, unsigned long int

e.g.,
07 int

040000 unsigned int
0100000 long int
0260000000 unsigned long int

0x0 int

Oxfeed unsigned int
0x10000 long int
OxfOOOffff unsigned long int

111-26 Section 5 - Lexical elements

Suffixed by the letter u or u:

unsigned int, unsigned long int

e.g.,
2u

80000u

unsigned
unsigned

int

long int

066u

0660000u

unsigned
unsigned

int

long int

Oxcu

OxfacedU

unsigned
unsigned

int

long int

Suffixed by the letter 1 or L:

long int, unsigned long int

e.g.,

911 long int
30000000001 unsigned long int

0341 long int
0333333333331 unsigned long int

OxabOl long int
0xace0140fl unsigned long int

Suffixed by both the letters u or u and 1 or L:

unsigned long int.

e.g.,

lOlul unsigned long int

Olu unsigned long int

0x3ful unsigned long int

Note: Negative values such as -38 actually consist of the unary minus applied
to a positive constant.. The compiler front end actually does the calculation, no
code is generated. However, the type of the constant is decided before the
unary minus is applied. Thus -327 68 is actually a long int because
327 68 is a long int (see unsuffixed decimal constants above). However,
-0x8000 is an unsigned int because 0x8000 is unsigned int.

Section 5 -Lexical elements

integer-constant:
decimal-constant integer-suffixopl
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:

non-zero-digit
decimal-constant digit

octal-constant:
0

octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

non-zero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
012345678

a b c d e f

A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopl

unsigned-suffix: one of
u 0

long-suffix: one of
1 L

111-27

IH-28 Section 5 - Lexical elements

5.3.3 Enumeration constants

An identifier declared as an enumeration constant has type int.

Numeric values are assigned to the enum constants starting at 0 and
incrementing by 1. As described later this sequence may be interrupted and
the numeric values need not be unique.

enumeration-constant:

identifier

5.3.4 Character constants

A character constant is a sequence of one or more characters enclosed in
single-quotes, as in ' z ' or ' ws '. The characters may be any characters in
the source character set, or specified by an escape sequence, as described in
section 5.3.5. They are mapped in one character per byte to characters in the
target character set.

The double-quote " and question-mark ? are representable either by
themselves or by the escape sequences \" and \? respectively, but the single-
quote ' can only be represented by the escape sequence \ '.

A character constant has type int. The value of a character constant
containing a single character is the numerical value of the representation of the
character interpreted as an integer. Prospero C places each character in a byte,
left to right in the word. As many characters are allowed in a character
constant as bytes that occupy an int, i.e., 2. By default the type char is
treated the same as signed char, the high-order bit position of a single-
character character constant is treated as a sign bit. If the U (unsigned)
compiler option is enabled then char is treated as unsigned char.

e.g.,
'a' '\'' •"• '\7' '\n' '\x20'

character-constant:

'c-char-sequence'

c-char-sequence:
c-char

c-char-sequence c-char

c-char:

any character in the source character set except
the single-quote ', backslash \, or new-line

escape-sequence

7 Section 5 - Lexical elements 111-29

5.3.5 Escape sequences

Escape sequences or characters are used in character and string constants to
represent characters that might otherwise be impossible to enter directly into
the source text.

Alphabetic escape sequences representing non-graphic characters in the target
character set producethe following effectson display devices:

\a ("alert")

\b ("backspace")

\f ("form feed")

\n ("new line")

\r ("carriage return")

\t ("horizontal tab")

\v ("vertical tab")

V

\"

\?

\\

Produces an audible or visible alert. The active
position is not changed. It is equivalent to an ASCII
value of 7.

Moves the active position one character to the left. If
the active position was at the beginning of a line, the
behavior is unspecified. It is equivalent to an ASCII
value of 8.

Moves the active position to the initial position at the
start of the next logical page. It is equivalent to an
ASCII value of 12.

Moves the active position to the initial position of the
next line. It is equivalent to an ASCII value of 10.

Moves the active position to the initial position of the
current line. It is equivalent to an ASCII value of 13.

Moves the active position to the next horizontal
tabulation position on the current line. If the active
position is at or past the last defined horizontal
tabulation position, the behavior is unspecified. It is
equivalent to an ASCII value of 9.

Moves the active position to the initial position of the
next vertical tabulation position. If the active position
is at or past the last defined vertical tabulation
position, the behavior is unspecified.

Output a single quote

Output a double quote "

Output a question mark ?

Output a backslash \

" 111-30 Section 5 - Lexical elements

It is also possible to represent characters by specifying their bit pattern; either
in octal or hexadecimal.

Up to three octal digits that follow the backslash in an octal escape sequence are
taken to be part of the construction of a single character. The numerical value
of the octal integer specifies the value of the desired character. E.g., the escape
sequence \03 3 represents the character whose code is 27, and the
construction \0 is commonly used to represent the null character.

The hexadecimal digits that follow the backslash and the letter x, or X in a
hexadecimal escape sequence are taken to be part of the construction of a single
character. The numerical value of the hexadecimal integer so formed specifies
the value of the desired character. E.g., the escape sequence \0xla represents
the character whose code is 26.

If any other escape sequence is encountered a warning is given and the
backslash character returned.

Even though eight bits are used for objects that have type char, the
construction \xl23 specifies a character constant containing only one
character. To specify a character constant containing the two characters whose
values are 0x12 and '3', the construction \0223 may be used, since a
hexadecimal escape sequence is terminated only by a non-hexadecimal
character.

See section 5.3.4 for a full discussion of character constants.

escape-sequence:

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
V \" \? \\ \a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hex-digit
hexadecimal-escape-sequence hex-digit

Section 5 -Lexical elements HI-31

5.4 String literals

A string literal is a sequence of zero or more characters enclosed in double-
quotes, as in "axe".

The same considerations apply to each character in a string literal as if it were
in a character constant, except that the single-quote ' is representable either by
itself or by the escape sequence \ ', but the double-quote " can only be
represented by the escape sequence \".

A string literal has static storage duration and type array o/char. It is
initialized with the given characters. String literals that are adjacent tokens are
concatenated into a single string literal (in translation phase 6). A null
character is appended onto the end of all string literals, so that
sizeof ("Jimmy") has value 6.

This pair of adjacent string literals:

"\x01" "2"

produces a single string literal containing the two characters whose values are
' \x01' and ' 2'. This is because escape sequences are converted into single
characters in the execution character set just prior to adjacent string literal
concatenation.

e.g.,
"Hello\n" "The bell\a tolled"

"\0\1\2" "\""

"a string\
occupying more than one line"

string-literal:
"s-char-sequenceopt "

s-char-sequence:
s-char

s-char-sequence s-char

s-char:

any character in the source character set except the double-quote ",
backslash \, or new-line

escape-sequence

~ IH-32 Section 5 - Lexical elements

5.5 Operators

An operator specifies an operation to be performed that yields a value (an
evaluation). An operand is an entity on which the operator acts. See section 7
for full details.

5.6

A punctuator is a symbol that has independent syntactic and semantic
significance but does not specify an operation to be performed that yields a
value. Depending on context, the same symbol may also represent an operator
or part of an operator.

punctuator: one of
[](){}*,:=;...#

operator

[
++

/
A

• one of
] ()

— s *

% « »

| &S ||

->

+

< > <=

! sizeof

/

*= /= %=

##

+= — = «= »= £

Punctuators

s= 1=

5.7 Comments

Except within a character constant, a string literal, or a comment, the
characters /*introduce a comment. In addition, if the characters /* occur
within a header name preprocessing token, the behavior is undefined. The
contents of a comment are examined only to find the characters */ that
terminate it.

Thus comments do not nest.

Section 6 - Declarations 111-33

6 DECLARATIONS

Declaring an identifier in C causes it to be associated with some object. The
object could be a type, a variable or a function. A declaration specifies how the
identifier should be interpreted in an expression and also gives it a set of
attributes. A declaration that also causes storage to be reserved for an object or
function named by an identifier is a definition.

The declaration specifiers consist of a sequence of specifiers that indicate the
linkage, storage duration, and part of the type of the entities that the
declarators denote. A declaration with an init-declarator-list is a defining
occurrence and specifies an initial value. The declarators give the identifiers
being declared.

Although allowed by the syntax, it is an error to write an empty declarator.

declaration:

declaration-specifiers init-declarator•-listopt;

declaration-specifiers:
storage-class-specifier declaration-specifiers,,,
type-specifier declaration-specifiersopt

init-declarator-list:

init-declarator

init-declarator-list, init-declarator

init-declarator:

declarator

declarator — initializer

7 HI-34 Section 6 -Declarations
6.1 Type specifiers

C provides a set of basic types and a method of creating aggregates of one or
more of these types.

The type specifier provides the basic types. Objects may be declared to have
one of these basic types, e.g., int i;, and aggregate types built from them,
e.g., char s [3] ;

long or short Only one of these may be given in a type-
specifier, optionally in conjunction with an int.
long may also be specified in conjunction with
double.

signed or unsigned Only one of these may be given in a type-specifier
(in conjunction with int, long, or short).
They may also be specified alone in which case
the presence of int is implied.

const and volatile These may be specified alone (in which case the
presence of int is implied), or in conjunction
with other type specifiers. They are also the only
specifiers that may be used in conjunction with a
struct, union, or enumeration specifier, or
with a typedef name.

If there are no type specifiers in the declaration specifiers in a declaration, the
type is taken to be int.

Basic types Abbreviations

integer types
signed char char
signed short short
signed int int
signed long long
unsigned char char
unsigned short int unsigned short
unsigned int unsigned
unsigned long int unsigned long

floating types
float

double

long double

other types
void

I

I

Section 6 - Declarations 111-35

Type Storage Range of values

signed char 1 byte -128..127

signed short 2 bytes -32768 .. 32767

signed int 2 bytes -32768 .. 32767

signed long 4 bytes -2147483648 .. 2147483647

unsigned char 1 byte 0.. 255

unsigned short int 2 bytes 0 .. 65535

unsigned int 2 bytes 0 .. 65535

unsigned long int 4 bytes 0 .. 4294967295

float 4 bytes 0, ±1.17549435e-38
.. 3.40282347e+38

double 8 bytes 0, ± 2.225073858507201 e-308
.. 1.797693134862316e+308

long double 8 bytes same as double
void

type-specifier:
void

char

short

int

long
float

double

signed
unsigned
const

volatile

struct-or-union-specifier
enum-specifier
typedef-name

J 111-36 Section 6 - Declarations
6.2 const and volatile

The idea behind the const type specifier is to provide the programmer with
a method of telling the compiler that objects may be regarded as "read-only".
Objects declared with the const specifier may only be given a value via an
initializer or, if the object is a parameter variable, by the value being passed as
an argument to the function cf which the object is a parameter.

The volatile type specifier is a method of telling the compiler that the
values of certain objects may be modified through external means, e.g.,
memory mapped I/O.

If a pointer to a const object is converted (by an explicit cast) to a pointer to
a type without the const attribute, modifying the object by means of the
pointer to non-const will succeed, but may lead to undefined behavior.

An object whose type includes the volatile type specifier may be modified
in ways unknown to Prospero C, or have unknown side effects. Therefore any
expression referring to such an object is evaluated strictly according to the
sequence rules of the abstract machine. Furthermore, at every sequence point
the value of the object in storage agrees with that prescribed by the abstract
machine, except as modified by the unknown factors mentioned previously.

If a pointer to a volatile object is converted (by an explicit cast) to a
pointer to a type without the volatile attribute, and the object is referred
to by means of the pointer to non-volatile, the behavior is undefined.

If a declaration includes const or volatile modifying the type of a
declarator that has aggregate type or union type, the type of each member of
the aggregate or union inherits the modifying type specifier.

An object declared:

extern volatile const real_time_clock;

may be modified by hardware, but cannot be modified by the program.

Although syntactically const and volatile are two type specifiers, they
actually modify declarators.

e.g.,
const struct s { int fl; } a;

struct s b;

here a is a const object, but b is not.

typedef const struct s { int fl; } cs;
cs a;

cs b;

here both a and b are const objects.

7 Section 6 - Declarations 111-37
6.3 struct and union specifiers

A struct is a type consisting of an ordered sequence of named members.

e.g.,

struct {

int first;

char second;

float *third[5];

}

A union is a type consisting of an overlapping sequence of named members.
A union may be thought of as a struct all of whose members begin at the
same address. The value of at most one of the members can be stored in a

union object at any time.

e.g.,

union {

int ival;

char cval;

float *apf[5] ;

} x;

x.ival = 0;

/* ... */ x.ival /* ... */

x.cval = 'A';

/* ... */ x.cval /* ... */

*x.apf[3] = 1.2;
/* .. */ *x.apf[3] /* ... */

The presence of a struct-declaration-list in a struct-or-union-specifier declares
a new type. The type is incomplete until after the } that terminates the list.

A struct or union may not contain a member with incomplete or function
type. Hence it must not contain an instanceof itself (but may contain a pointer
to an instance of itself).

A member of a struct or union may have any object type. In addition, a
member may be declared to consist of a specified number of bits (including a
sign bit, if any). Such a member is called a bit-field. Bit-fields provide a
method of storing more than one object in a word of storage. This is done by
specifying the number of bits occupied by the object, its width.

111-38 Section 6 - Declarations

The constant expression that specifies the width of a bit-field must have
integral type and non-negative value that must not exceed the number of bits in
an int. If the width is zero, the declaration may not have a declarator.

The unary & address (address-of) operator may not be applied to a bit-field
object, thus there are no pointers to bit-fields.

A bit-field may have type int, unsigned int, or signed int. The
high-order bit position of a plain int bit-field is treated as a sign bit. A bit
field is interpreted as an integral type.

Prospero C will allocate sufficient storage to hold a bit-field. If enough space
remains, a bit-field that follows another bit-field will be packed into adjacent
bits of the word. If insufficient space remains, space is allocated from the next
word.

The first bit field encountered is the least significant in the byte (or word) it is
allocated.

e.g.•

struct {

int aa : 2;

int bbb : 3;

int : 7;

int c : 1;

int ddd : 3;

}

will pack as dddcxxxxxxxbbbaa in a 16 bit int. (Bit fields will be
considered as byte streams with bits numbered as follows: [7..0] [15..8]
[23..16] etc., so the above example would be considered as [xxbbbaa]
[dddcxxxx]) Consecutive bit-fields that would all pack into one byte will
only be allocated one byte.

Bit-fields can straddle byte boundaries, but not word boundaries.

A bit-field declaration with no declarator, but only a colon and a width,
indicates an unnamed bit-field.

e.g.

struct {

int rdy flag 2;

int : 4,

int rev flag 1;

int snd flag 1;

Section 6 - Declarations 111-39

As a special case of this, a bit-field with a width of 0 indicates that no further
bit-field is to be packed into the unit in which the previous bit-field, if any, was
placed.

Within a struct object, the non-bit-field members and the units in which
bit-fields reside have addresses that increase in the order in which they are
declared. A pointer to a struct object, suitably cast, points to its initial
member or, if it is a bit-field, to the unit in which it resides. Pointers to
subsequent fields compare greater than earlier fields.

There may be unnamed holes within a struct object. These are added by the
compiler to achieve the appropriate alignment. Any object whose size is
greater than one byte will be allocated space starting on a word boundary, and
an even number of bytes. If the size of a struct is more than two bytes,
there may also be unnamed padding at the end to make its size even, in order to
achieve the appropriate alignment were the struct to be a member of an
array.

e.g.,
struct {

char fl

int f2

char f3

} si;

There is one padding byte between the first and second field and at the end of
the structure; sizeof (si) is equal to 6.

struct {

char fl

char f2

char f3

} s2;

There is a padding byte at the end of the structure; sizeof (s2) is equal to
4.

struct-or-union-specifier:
struct-or-union identifier ,
struct-or-union identifier

struct-or-union:

struct

union

{ struct-declaration-list }

JT IH-40 Section 6 - Declarations
struct-declaration-list:

struct-declaration

struct-declaration-list struct-declaration

struct-declaration:

type-specifier-list struct-declarator-list ;

type-specifier-list:
type-specifier
type-specifier-list type-specifier

struct-declarator-list:

struct-declarator

struct-declarator-list , struct-declarator

struct-declarator:

declarator

declarator^, : constant-expression

6.3.1 Structure and union tags

A struct or union specifier of the form:

struct-or-union identifier { struct-declaration-list}

declares the identifier to be the tag of the struct or union specified by the
list. A subsequent declaration in the same scope may then use the tag, but the
bracketed declaration list must be omitted.

A specifier of the form:

struct-or-union identifier

is an incomplete type. It declares a tag that may be used only when the size of
an object of the specified type is not needed. Such a construct is needed when
defining mutually referencing structs.

e.g.,

struct s2;

struct si { struct s2 *s2p; /*...*/}; /* Dl */
struct s2 { struct si *slp; /*...*/}; /* D2 */

This declares a new tag s2 in the inner scope; the declaration D2 then
completes the declaration of the new type.

Section 6 - Declarations 111-41

If the type is to be completed, another declaration of the tag in the same scope
(but not in an enclosed block, which would declare a new type known only
within that block) must define the members.

struct-or-union identifier

The declaration supersedes any prior declaration of the struct or union
tag in an enclosing scope.

A struct or union specifier of the form:

struct-or-union { struct-declaration-list}

specifies a distinct struct or union type that can only be referred to by the
declaration of which it is a part (it is anonymous).

A struct or union specifier of the form:

struct-or-union identifier { struct-declaration-list}

specifies a struct or union type that can be referred to by the declared
tag, and which is a complete type.

struct tree_node {
int count;

struct tree_node *left, *right;
};

declares a struct that contains an integer and two pointers to objects of the
same type. Once this declaration has been given, the declaration:

struct tree_node s, *sp;

defines s to be an object of the given type and sp to be a pointer to an object of
the given type. With these declarations, the expression sp->left refers to
the left struct tree_node pointer of the object to which sp points; the
expression s . right->count refers to the count member of the right
struct tree_node pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tree_node TNODE;
struct tree_node {

int count;

TNODE *left, *right;

};
TNODE s, *sp;

7 HI-42 Section 6 - Declarations
6.4 Enumeration specifiers

An enum specifier is a method of associating a named list of identifiers with
an object or type.

In the default case the enum constants are assigned values from zero in
increments of 1. It is possible to interrupt this sequence by explicitly assigning
an integral constant to one or more of the enum constants. The values of the
constants need not be ordered or unique within the specifier.

The identifiers in an enumeration list are declared as constants that have type
int and may appear wherever int is permitted. Thus, the identifiers of
enumeration constants in the same scope must all be distinct from each other
and from other identifiers declared in ordinary declarators.

The role of the identifier in the enum-specifier is analogous to that of the tag in
a struct-or-union-specifier: it names a particular enumeration. An
enumeration is an incomplete type until after the } that terminates the
enumeration list.

The addressable storage unit allocated for an object that has an enumeration
type is an int.

e.g.,

enum numbers {

zero, one, two, three

};
enum roman_enum {

1=1, V=5, X=V+V, L=V*X, C=100, D=500, M=1000

} date;

The values of the enumeration constants declared above are as follows: zero

is 0, one is 1, etc.; X is 10, L is 50 etc.

enum-specifier:
enum identifieropl { enumeration-list }
enum identifier

enumeration-list:

enumeration

enumeration-list, enumeration

enumeration:

enumeration-constant

enumeration-constant = constant-expression

Section 6 - Declarations 111-43

6.5 Storage-class specifiers

The storage-class specifier determines the lifetime of the declared object. At
most one storage-class specifier may be given in the declaration specifiers in a
declaration.

auto The object has local (within a function extent). This specifier is
not allowed outside function definitions.

extern The object has static storage duration. This specifier may appear
on an object in a declaration at any point in a program. See
section 6.9.1 for a discussion of defining versus reference
occurrences.

register This specifier follows the same rules as auto. Its purpose is to
give a hint from the programmer to the code generator that the
object being declared is frequently used and an attempt ought to
be made to keep it in a register for as long as possible. Prospero
C does its own register allocation.

static The object has static storage duration. When applied to a
function it also means that the function name is not visible
outside of the translation unit. Objects declared with the
static storage class are defining occurrences.

typedef Not actually a storage class in the semantic sense. Used to
indicate that a synonymous data type is being declared.

pascal This is a Prospero C extension that allows interfacing with
Prospero Pascal. It is essentially the same as extern but the
object it declares may be accessed from, or defined in, a
program written in Pascal.

Functions in Prospero C have their parameters in the opposite
order to Pascal. A function declared with the pascal specifier
is called according to the Pascal conventions rather than those of
'C.

The /S (strict) option disables this keyword.

fortran This is a Prospero C extension, similar to pascal above,
which allows interfacing with Prospero Fortran.

The /S (strict) option disables this keyword.

7 HI-44 Section 6 - Declarations
The following rules apply to a declaration without a storage-class specifier:

For a function, the meaning is the same as if the storage-class specifier
were extern.

For an object declared inside a function or among its parameters, the
declaration specifies automatic storage duration.

For an object declared outside a function, the declaration is an external
object definition or tentative definition.

storage-class-specifier:
typedef
extern

static

auto

register
pascal
fortran

Section 6 - Declarations 111-45

6.6 Declarators

A declarator is an identifier used to declare an array, pointer or function
returning type. The identifier is augmented by asterisks (*), brackets ([]) and
parentheses. A declarator is not a complete declaration. A type specifier is also
required to provide the base type.

Each declarator declares one identifier. When a construction of the same form
as the declarator appears in an expression, it constitutes an operand of the
scope, storage duration, and type indicated by the declaration specifiers.

declarator:

pointer^, direct-declarator

direct-declarator:

identifier
(declarator)
direct-declarator [constant-expressionop,]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listopl)

pointer:
* type-specifier-list• ,
* type-specifier-listopl pointer

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropl

identifier-list:
identifier
identifier-list , identifier

7 IH-46 Section 6 - Declarations
6.6.1 Pointer declarators

In C, pointers into storage tend to be used in preference to array indexing. A
pointer is declared to point to a declared type.

If P has the form:

* type-specifier-listopl P

the type of the contained identifier is type-specifier pointer to T. If the type
specifier list includes const, the identifier is a constant pointer. If the type
specifier list includes volatile, the identifier is a volatile pointer.

The following pair of declarations demonstrates the difference between a
variable pointer to a constant value and a constant pointer to a variable value.

e.g.,

const int *ptr_to_constant;
int *const constant_ptr;

The contents of the const int pointed to by ptr_to_constant may
not be modified, but ptr_to_constant itself may be changed to point to
another const int. Similarly, the contents of the int pointed to by
constant_ptr may be modified, but constant_ptr itself must
always point to the same location.

The declaration of the constant pointer constant_ptr may be clarified by
including a definition for the type pointer to int.

e.g.,
typedef int *int_ptr;
const int_ptr constant_ptr;

declares constant_ptr as a const object that has typepointer to int.

No type specifier other than const and volatile (or both) may appear in
the list of type specifiers.

Section 6 - Declarations IH-47

6.6.2 Array declarators

An array is a method of grouping together one or more objects of the same
type. In C, arrays tend to be rarely used in expressions, they have been
supplanted by pointers. However, arrays occur in declarations as a method of
obtaining a defined amount of storage.

The constant expression specifying the size of an array must have integral type
and be a constant value greater than zero.

In the following contexts an array bound may be omitted:

In a multi-dimensional array declaration the first size may be omitted.

An array is being declared as a parameter of a function.

When the array declaration has storage-class specifier extern and the
definition that actually allocates storage is given elsewhere.

When the declarator is followed by initialization; in this case, the size is
determined by the number of initializers supplied.

If the size is not present, the array type is an incomplete type.

If A has the form:

A[constant-expressionopt]

the contained identifier has type type-specifier arrayofT. When several array
of specifications are adjacent, a multi-dimensional array is declared.

e.g.,

float fa[ll], *afp[17];

declares an array of float numbers and an array of pointers to float
numbers.

Note the distinction between the declarations:

extern int *x;

extern int y[];

The first declares x to be a pointer to int; the second declares y to be an
array of int of unspecified size (an incomplete type), the storage for which is
defined elsewhere.

~7 111-48 Section 6 - Declarations

6.6.3 Function declarators

A function declaration is a method of specifying an identifier to be a function
(or pointer to function, or array of functions), also giving the type of its
parameters and its return type.

As well as being able to call a function there are a few operations that may be
performed on function expressions (assignment and comparison).

If F has the form:

T(parameter-type-list)

or

T(identifier-list\opt)

the contained identifier has the type type-specifierfunction returning T .

A parameter type list declares the types of, and may declare identifiers for, the
parameters of the function. Terminating the list with an ellipsis (, . . .),
implies that zero or more arguments of unknown type may follow.

To specify a function having no parameters the specifier void is given, i.e.,
int f(void).

Note: The declaration int f 1 () ; does not declare a function having no
parameters. For compatibility with pre-standard C usage this specifies a
function returning int with unknown parameters.

In a parameter declaration that is not part of a function definition, i.e., in a
function prototype declarator, the storage-class specifier register is
ignored.

The declaration:

double frexp(double value, int *exp);

declares a function f rexp returning a double that takes two arguments, a
double and a pointer to int. The parameter names serve no purpose here
other than documentation; they are required in a function definition.

Section 6 - Declarations IH-49

Here are two more intricate examples:

FILE *freopen(const char *, const char *, FILE *);

declares f reopen as a function returning a pointer to FILE, that takes
three arguments: two constant strings (const char *) and a pointer to
FILE. (FILE is a typedef-name used in the standard input/output library, see
<stdio.h>)

The declaration:

void (*signal(int, void (*) (int))) (int) ;

declares signal as a function that returns a pointer to function with one
in*, parameter returning void, signal itself has two parameters, an int
and a pointer tofunction with one int parameter returning void. This can
be seen more clearly from the following:

typedef void (*ptr_to_fn_void)(int);
ptr_to_fn_void signal(int, ptr_to_fn_void) ;

which is an equivalent declaration.

All declarators, in the same scope, of a particular function must declare the
same return type. Each parameter type list, if present, must agree in the
number of parameters and in the use of the ellipsis terminator; corresponding
parameters must have the same types. Also if the declarator in a function
definition contains an identifier list, the type of a parameter identifier shall
also be deemed to agree with its corresponding prototype parameter if, after
applying the default argument promotion to the identifier's type, that type is
the same as the corresponding parameter type. (For each parameter declared
with function or array type, its type for these comparisons is the one resulting
from conversion to pointer type).

Although the semantic constraints on parameter matching between declarator
and definition allow differences (up to promotion) in type, there is no
guarantee that the generated code will be correct.

The following will work in Prospero C because int and char parameters
occupy the same amount of stack space:

void absfl(int);

void absf1 (a)

char a;

{

}

7 HI-50 Section 6 - Declarations
Mixing float and double declarations will cause undefined results since
the objects use different amounts of space on the stack when passed as
parameters.

The only storage-class specifier allowed in a parameter declaration is
register.

An identifier list in a function declarator that is not part of a function
definition must be empty.

A function declarator may not declare a return type of array or function.

6.6.4 Type names

In two situations in C the name of a type is required (cast expressions and when
applying sizeof to a type).

Note: A type name is not a typedef name. It is basically a declaration that
omits the object being declared.

As indicated by the syntax, empty parentheses in a type name are interpreted as
function with no parameter specification, rather than redundant parentheses
around the omitted identifier.

The constructions:

char

unsigned *

int *[2]

int (*)[6]

int *()

void (*)(int)

int (*const [])(unsigned int, ...)

name respectively the types:

char,

pointer to unsigned int,

array of two pointers to int,

pointer to an array of six ints,

function with no parameter specification returning a pointer to int,

pointer to function with int parameter and no return value,

Section 6 - Declarations 111-51

array of an unspecified number of constant pointers to functions, each
with one parameter that has type unsigned int and an unspecified
number of other parameters, returning an int.

type-name:

type-specifier-list abstract-declaratoropl

abstract-declarator:

pointer
pointeropl direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropl [constant-expressionopl]
direct-abstract-declaratoropl (parameter-type-listop,)

6.6.5 Type definitions and type equivalence

A typedef declaration does not introduce a new type, only a synonym for
the type. A typedef name shares the same name space as other identifiers
declared in ordinary declarators. An identifier declared as a typedef may be
redeclared in an inner block, but the type specifiers may not be omitted in the
inner declaration and may not consist only of const or volatile or both.

Two type specifier lists are the same if they contain the same set of type
specifiers (including tags).

For this purpose, two structs, unions, or enumerations are considered to
have different tags if either or both do not have a tag.

Two types are the same if:

They have the same ordered set of type specifier lists and abstract
declarators (including the types of function parameters), either directly
or via typedefs.

Two arrays of members that have the same type are treated as having the
same type if either array declarator has no size specification;

Two functions that return the same type are treated as having the same
type if one function declarator has no parameter specification and the
other specifies a fixed number of parameters, none of which is affected by
the default argument promotions.

IH-52 Section 6 - Declarations

e.g., after:

typedef int range, domain(char);
typedef struct { double re, im; } complex;

the constructions:

range step;

extern domain *set;

complex z, *zp, za[3];

are all valid declarations. The type of step is int, that of set is pointer to
function with one char parameter returning int, and that of z is the
specified struct; zp is a pointer to such a struct; za is an array with
three elements of struct type. The object step is considered to have
exactly the same type as any other int object.

After the declarations:

typedef struct si { int x; } tl, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type tl and the type pointed to by tpl are equivalent to each other and to the
type struct si, but different from the types struct s2 and t2 and the
type pointed to by tp2 and from type int. The C standard has also
introduced the concept of type equivalence between translation units. This
equivalence is based on identical storage layout. The compiler cannot, and is
not required to, enforce this equivalence.

If an identifier is declared more than once in the same scope (by declarations of
an object with internal or external linkage or of a function), or if the same
identifier is declared with external linkage in separate translation units or in
disjoint scopes within the same translation unit, all the declarations must
specify the same type. Otherwise, the behavior is undefined.

typedef-name:
identifier

I

Section 6 - Declarations 111-53

6.7 Function definitions

A function definition contains a block of zero or more declarations and

statements in addition to the definition of arguments and return type.

The identifier declared in a function definition (which is the name of the
function) must have a function type, as specified by the declarator portion of
the function definition.

There are two methods of specifying the names and types of the parameters:

f(a,b)

int a; char b;

Here a list of identifiers appears in the function parameter list. The types of
these parameters then follow. If the type of a parameter is not given, int is
assumed.

f(int a, char b)

Here the names and types of the parameters is given in the parameter list.

It is illegal to mix the two styles of declaration.

The difference between these two definitions is that the second form acts as a

prototype declaration that forces conversion of the arguments of subsequent
calls to the function, whereas the first form does not.

The return type of a function must be void or an object type other than array.

An identifier declared as a typedef name may not be redeclared as a parameter.
The declarations in the declaration list may only contain the register
storage class specifier. Also, parameters may not be initialized.

On entry to the function the value of the argument expression is converted to
the type of the parameter, as if by assignment to the parameter. Because array
expressions and function designators as arguments are converted to pointers
before the call,a declaration of a parameter as array of type will be adjusted to
pointer to type, and a declaration of a parameter asfunction will be adjusted to
pointer tofunction, as in lvalues and function designators, see section 3.4.1.

Each parameter is treated as having automatic storage duration. Its identifier is
an lvalue. A parameter is in effect declared at the head of the compound
statement that constitutes the function body, and therefore may not be
redeclared in the function body (except in an enclosed block).

7 IH-54 Section 6 - Declarations
To pass one function to another, one might say:

int f(void);

g(f) ;

Note that f must be declared explicitly in the calling function, as its appearance
in the expression g (f) was not followed by (. Then the definition of g might
read:

g(int (*funcp)(void))
{

/*. . .*/

(*funcp)()
/* or funcp() ... */

or, equivalently,

g(int func(void))
{

/*...*/
func ()

/* or (*func) 0 ... */

}

function-definition
declaration-specifiersopl declarator declaration-listopl compound-

statement^,

Section 6 - Declarations 111-55

6.8 Initialization

Initialization on declarations provides a method of giving an initial value to an
object. The object is assigned the value immediately after storage is allocated to
it (at program execution time). This means that objects of static storage
class are initialized once at program startup. Objects of non-static storage
class are initialized every time they start a new lifetime.

Thus static objects are assigned their value prior to executing the first
statement in main. The initialization of auto objects can be thought of as if
an assignment statement was executed as the declarations were 'flowed
through' on entering a block.

If an object that has static storage duration is not initialized explicitly, it is
initialized implicitly as if every member that has arithmetic type were assigned
0 and every member that has pointer type were assigned a null pointer
constant.

The value of an auto object declared without initialization is undefined until
explicitly assigned.

If a goto to a label in a compound statement containing declarations with
initializers is made; the initialization will not occur.

The initializer for a scalar must be a single expression, optionally enclosed in
braces. The initial value of the object is that of the expression; the same type
constraints and conversions as for simple assignment apply.

A brace-enclosed initializer for a union object initializes the member that
appears first in the declaration list of the union type.

Constraints on initialization:

There must be no more initializers in an initializer list than there are
objects to be initialized.

The type of the entity to be initialized must be an object type or an array
of unknown size.

All the expressions in an initializer for an object that has static storage
duration, or in an initializer list for an object that has aggregate or
union type must be constant expressions.

The initializer for a struct or union object that has automatic
storage duration must either be an initializer list as described below, or a
single expression that has the same struct or union type. In the latter
case, the initial value of the object is that of the expression.

f HI-56 Section 6 - Declarations

e.g.,
static i = 0;

float f = 1.23;

void vf()

{ long 1 = i + 1;
int s_f = sizeof (f);
struct s_t vs = f_ret_s_t();
static unsigned Is = 14;
int i;

for (i = 0; i < 10; i++)
{ char af = 'z';

/* some code */

}
/* some code */

}

6.8.1 Initializing arrays, structs and unions

Entire arrays, structs and unions may be initialized. This is achieved by
specifying a list of constant expressions between braces.

If there are fewer initializers in a list than there are members of an aggregate,
the remainder of the aggregate will be initialized implicitly. The value used
will be the same as that assigned to objects that have static duration,
defined without any initial value.

An array of characters may be initialized by a string literal, optionally
enclosed in braces. Successive characters of the string literal (including the
terminating null character if there is room or if the array is of unknown size)
initialize the members of the array.

If the aggregate contains members that are aggregates or unions, or if the
first member of a union is an aggregate or union, the rules apply
recursively to the subaggregates or contained unions. If the initializer of a
subaggregate or contained union begins with a left brace, the succeeding
initializers initialize the members of the subaggregate or the first member of
the contained union. Otherwise, only enough initializers from the list are
taken to account for the members of the first subaggregate or the first member
of the contained union; any remaining initializers are left to initialize the
next member of the aggregate of which the current subaggregate or contained
union is a part.

If an incomplete array is initialized, its size is determined by the number of
initializers provided for its elements. At the end of its initializer list, the array
is no longer an incomplete type.

7 Section 6 - Declarations 111-57
The declaration:

int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three
members, and

float y[4] [3] = (
{ 1, 2, 3 },
{ 1, 4, 9 },
{ 1, 8,81 }

is a definition with a fully bracketed initialization: the values 1, 2, and 3
initialize the first row of the array object y [0], namely y [0] [0],
y [0] [1], and y [0] [2]. Likewise the next two lines initialize y [1] and
y[2]. The initializer ends early, so y [3] is initialized with zeroes. Precisely
the same effect could have been achieved by

float y[4][3] = {
1, 2, 3, 1, 4, 8, 1, 9, 81

The initializer for y [0] does not begin with a leftbrace, so three items from
the list are used. Likewise the next three are taken successively for y [1] and
y[2].

The declaration:

float z[4][3] = {
{ 3 }, { 5 }, { 7 }, { 11 }

};

initializes the first column of z as specified and initializes the rest with zeros.

The declaration:

struct{float f; int i;} fi[]=
(1.2, 3, { 7.9 }, 0.4, 14 1;

is inconsistently bracketed. The array fi has 3 elements. Field f i [2] . i has
value 0, since the initialization for this element is incomplete.

7 111-58 Section 6 - Declarations
The declaration:

short q[4][3][2] = {
{ 1 }, L
{ 2, 3 },

{ 4, 5, 6 } r

>' I
contains an incompletely but consistently bracketed initialization. It defines a
three-dimensional array object: q[0] [0] [0] is 1, q[l] [0] [0] is 2,
q [1] [0] [1] is 3, and 4, 5, and 6 initialize q[2][0][0], *•
q [2] [0] [1], and q [2] [1] [0], respectively; all the rest are zero. The
initializer for q[0] [0] [0] does not begin with a left brace, so up to six r
items from the current list may be used. There is only one, so the values for the
remaining five members are initialized with zero. Likewise, the initializers for
q[l] [0] [0] and q[2] [0] [0] do not begin with a left brace, so each
uses up to six items, initializing their respective two-dimensional sub-
aggregates. If there had been more than six items in any of the lists, an error
message would be given. The same initialization result could have been
achieved by:

I
short q[4] [3] [2] = {

1, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0,

};

or by:

2,

4, 5, 6

short q[4] [3] [2]
{

{ 1 },

{ 2, 3 },

>,

},
{

{ 4, 5 },
{ 6 },

}

};

in a fully-bracketed form.

I

I

Section 6 - Declarations 111-59

The declaration:

char s[] = "abc", t[3] = "abc";

defines character array objects s and t whose members are initialized with
string literals. This declaration is identical to

char s[] = { 'a', 'b', 'c\ »\0' },
t [] = { ' a ' , ' b ' , ' c ' } ;

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines a character pointer p that is initialized to point to a character array
object whose members are initialized with a string literal (four elements
including a trailing '\0'). If an attempt is made to use p to modify the contents
of the array, the behavior is undefined.

initializer
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list

initializer

initializer-list , initializer

6.9 External definitions

The unit of program text after preprocessing is a translation unit.This consists
of a sequence of external definitions of functions and objects (and other
declarations, such as type declarations), described as external because they
appear outside of any function.

An external definition implicitly declares its identifier to have file scope and
static storage duration. If there is no storage-class specifier, the identifier has
external linkage. As with other declarations, if there are no type specifiers the
type is taken to be int.

The storage-class specifiers auto and register may not appear in an
external definition.

IH-60 Section 6 - Declarations

translation-unit:

external-declaration

translation-unit external-declaration

external-declaration:

function-definition
declaration

6.9.1 External object definitions

C allows identifiers to be declared, in a translation unit, whose storage is
allocated elsewhere. The question thus arises, when looking at a declaration: is
this a definition (storage is actually allocated), or a reference?

The following rules are used to decide the situation.

A declaration of an identifier of an object outside of any function that
includesan initializerconstitutes the definition of the object.

A declaration of an identifier of an object outside of any function without
an initializer, and without a storage-class specifier or with the storage-
class specifier static, constitutes a tentative definition. A definition
(tentative or otherwise) for the same identifier with the same linkage may
be encountered elsewhere in the translation unit. All such tentative
definitions are taken to be declarations of the same object (subject to the
linkage rules in section 4.2). The first tentative definition is taken to be a
definition with initializer equal to 0.

E.g.,

int il = 1; /* definition, external linkage */
static int i2 = 2; /* definition, internal linkage */
extern int i3 = 3; /* definition, externa! linkage */
int i4; /* tentative definition, external linkage */
static int i5; /* tentative definition, internal linkage */

int il; /* valid tentative definition, refers to previous */
int ±2; I* invalid, linkage disagreement */
int i3; /* valid tentative definition, refers to previous */
int 14; /* valid tentative definition, refers to previous */
int i5; /* invalid, linkage disagreement */

extern int il; /* refers to previous, whose linkage is external */
extern int i2; /* refers to previous, whose linkage is internal */
extern int i3; /* refers to previous, whose linkage is external */
extern int i4; /* refers to previous, whose linkage is external */
extern int i5; /* refers to previous, whose linkage is internal */

Section 7 - Expressions HI-61

7 EXPRESSIONS

An expression is a sequence of operators and operands that specifies how to
compute a value, or how to generate side effects, or both.

The order of evaluation of subexpressions and the order in which side effects
take place are both unspecified.

The precedence of operators within an expression is specified by the syntax.
Parentheses may be used to regroup subexpressions containing operators of
different precedence.

There are some operators that have operands that are of integral type. Their
return values depend on the internal representations of integers, which is two's
complement in Prospero C.

All lvalues designating an object (whether or not the object is a member of an
aggregate or union) must have one of the following types:

the declared type of the object;

a type that differs from the declared type of the object only in the presence
or absence of the unsigned type specifier;

an aggregate or union type that includes one of the aforementioned types
among its members (including, recursively, a member of a sub-aggregate
or contained union);

a character type.

Afull expression is an expression that is not part of another expression. Each
of the following is a full expression:

an initializer;

the expression in an expression statement;

the controlling expression of a selection statement (if or switch);

the controlling expression of an iteration statement (while, do, or
for);

the expression in a return statement.

The end of a full expression is a sequence point.

~7 HI-62
7.1 Precedence of operators

primary expressions

Section 7 - Expressions

16 literals names simple tokens
16 a[i] subscripting
16 f 0 function call

16 . direct selection

16 -> indirect selection

unary operators

15 ++ — postfix increment/decrement
14 ++ — prefix increment/decrement
14 sizeof size

14 (type-name) cast

14 ~ bitwise not

14 i logical not
14 - arithmetic negation
14 & address of

14 * contents of

binary operators

13L * / % multiplicative
12L + - additive

11L « » shift

10L <><=>= relational

9L == ! = equality
8L & bitwise and

7L A. bitwise xor

6L 1 bitwise or

5L ss logical and
4L 11 logical or
3R •J : conditional

2R = + = -= *= /= % assignment
2R «= >>= &= A= 1 assignment
1L / comma

L, indicates left associative operators; R, right associative operators.

* Section 7 - Expressions HI-63

7.2 Primary expressions

An identifier naming an object or function is a primary expression. The value
of an identifier depends on the type given when it was declared.

In some circumstances identifiers of particular types have implicit conversions
performed on them, see section 3.4.1 for details.

A constant is a primary expression whose type depends on its form, as
described in section 5.3

A string literal is a primary expression. It is an lvalue of type array o/char.

A parenthesized expression is a primary expression whose type and value are
identical to those of the unparenthesized expression. It is an lvalue, a function
designator, or a void expression if the unparenthesized expression is,
respectively, an lvalue, a function designator, or a void expression.

e.g.,

Count 2 . 6 301u

"fred" (a+b* c) (0)

primary-ex:
identifier
constant

string-literal
(expression)

7 UI-64 Section 7 - Expressions
7.3 Postfix operators

postfix-ex:
primary-ex
postfix-ex [expression]
postfix-ex (argument-expression-listop,)
postfix-ex . identifier
postfix-ex -> identifier
postfix-ex ++
postfix-ex --

argument-expression-list:
assignment-ex
argument-expression-list , assignment-ex

7.3.1 Array subscripting

a[i] andi[a] are defined to be identical to (* ((a) + (i))).

Successive subscript operators designate a member of a multi-dimensional
array object. If a is an n-dimensional array with dimensions i*j* ... * k, then
a (used as other than an lvalue) is converted to a pointer to an (n-1)-
dimensional array with dimensions j * ... * k.. If the unary * operator is
applied to this pointer explicitly, or implicitly as a result of subscripting, the
result is the pointed-to (n-l)-dimensional array, which is itself converted into a
pointer if used as other than an lvalue. Thus arrays are stored in row-major
order (last subscript varies fastest).

One of the expressions must have type pointer to T, the other expression must
have integral type, and the result has type T.

Consider the array object defined by the declaration:

int x [3] [5] ;

Here x is a 3 * 5 array of ints; more precisely, x is an array of three member
objects, each of which is an array of five ints. In the expression x [i], x is
first converted to a pointer to the initial array of five ints. Then i is adjusted
according to the type of x, which conceptually entails multiplying i by the size
of the object to which the pointer points, namely an array of five int objects.
The results are added and indirection is applied to yield an array of five ints.
When used in the expression x [i] [j], that in turn is converted to a pointer
to the first of the ints, so x[i] [j] yields an int.

Note: x[i, j] is not a two dimensional reference. It is equivalent to
(* ((x) + (i,j))) i.e., the subscript is a comma expression.

Section 7 - Expressions HI-65

7.3.2 Function calls

A postfix expression followed by parentheses () containing a, possibly empty,
comma-separated list of expressions is a function call. The postfix expression
denotes the function called. The list of expressions specifies the arguments to
the function.

e.g.,
i = getchar();
putchar('\n');
printf("%d items\n", Count);

If the expression that precedes the parenthesized argument list in a function
call is solely an identifier, and if no declaration is in scope for this identifier,
the identifier is implicitly declared. This declaration occurs as if, in the
innermost block containing the function call, the following declaration
appeared:

e.g.,
extern int identifier () ;

An argument may be an expression of any object type. In preparing for the call
to a function, the arguments are evaluated, and each parameter is assigned the
value of the corresponding argument. Parameters are passed by value, except
arrays whose address is implicitly taken and passed. Passing the address of an
object can be achieved by using the address-of operator &. In the case of
complete arrays being passed, an implicit address-of occurs. Note: when
handling complex function declarations, it is useful to remember that a
function is called in the same form as it was declared:

long (* fp) (char, int); /* declaration */

(* fp) ('a', 73) ; /* call */

If no function prototype declarator is in scope at the function call, the default
argument promotions are performed on each parameter. Traditionally C
programmers have made use of knowledge regarding parameter layout. If the
number of arguments does not agree with the number of parameters, the
behavior is undefined.

The order of evaluation in Prospero C is such that arguments are evaluated
from right to left, followed by the function designator. There is a sequence
point just before the actual call.

111-66 Section 7 - Expressions

If a function prototype declarator is in scope at the function call, the arguments
are implicitly converted, as if by assignment, to the types of the corresponding
parameters. The ellipsis notation (, . . .) in a function prototype declarator
causes argument type conversion to stop after the last declared parameter. The
default argument promotions are performed on trailing arguments. If a
parameter is declared with a type that is affected by the default argument
promotions, and no semantically equivalent function prototype is in scope
where the function is defined, and a call is executed, the behavior is undefined.

It is an error for the arguments in the call to differ in number or type from the
prototype.

Note: The arguments in a function call are only compared against the
parameters of a function prototype declarator, if one exists. No comparison is
made against a function definition.

Recursive function calls are permitted. The maximum depth of recursion is
only limited by the memory available.

The expression that denotes the function called must have type pointer to
function returning void or returning an object type other than array.

e.g.

void max_and_min(int [], int, int *, int *);
char contains(int [], int, int);

short process(int [], int, short (int)); .
short print_item(int);

int list[LIST_ SIZE],
max_val,
min_ al,
search_val ;

short err;

if (contains (list, LIST_SIZE, search_val)
(/* some processing */

max_and_min(list, LIST_SIZE, &max_val, &min_val)

err = process(list, LIST_SIZE, print_item);

I

Section 7 - Expressions 111-67

7.3.2.1 Default argument promotions

The default argument promotions consist of the integer promotions (see
section 3.2.1) and also converting float to double. These conversions are
performed on expressions passed as arguments to functions where

No prototype declarator is in scope at the point of call.

A prototype declarator with the (, . . .) notation is in scope and the
argument corresponds to one of the unspecified parameters.

7.3.3 Structure and union members

A postfix expression followed by a dot . and an identifier selects a member of
the structure or union object preceeding the dot. The value is that of the named
member, and is an lvalue if the first expression is an lvalue.

A postfix expression followed by an arrow -> and an identifier selects a
member of a structure or union object pointed to by the expression to the left
of the arrow. The value is that of the named member of the object to which the
first expression points, and is an lvalue.

If SS is a valid pointer expression (where &is the address-of operator, which
generates a pointer to its operand) the expression (&S)->field is
equivalent to S . field.

If a member of a union object is accessed after a value has been stored in a
different member of the object, die behavior is not defined. In one special case
the results are defined. If a union contains several structures that share a
common initial sequence, and if the union object currently contains one of
these structures, it is possible to inspect the common initial part of any of them
to obtain the expected results.

w IH-68 Section 7 - Expressions

e.g.,

enum lisp_type { LIST, INTEGER, STRING };
union lisp {

struct {

enum lisp_type cell_is;
union lisp *head, *tail;

} list;

struct {

enum lisp_type cell_is;
int value;

} integer;
struct {

enum lisp_type cell__is;
char *string;

} string;

};
void print_cell(union lisp *x)
{
switch (x->list.cell_type) {

case LIST : {

do {

print_cell(x->list.head);
x = x->list.tail;

} while (x); /*x != NULL */
break;

)
case INTEGER : {

printf("%d", x->integer.value);
break;

}
case STRING : {

printf ("%s", x->string.string) ;

}

}

}

If f is a function returning a struct or union, and x is a member of that
struct or union, f () . x is a valid postfix expression but is not an lvalue.

Section 7 - Expressions 111-69

The following is a valid fragment:

struct cell {

int value;

struct cell *next;

In
struct cell find(struct cell *, int),

*new(void),

*head,

*tail,
temp;

(head = new())->next = new();
head->value = 3;

head->next->value = 5;

temp = find(head, 3);
tail = find(head, 6).next;

7.3.4 Postfix increment and decrement operators

The result of the postfix ++ operator is the value of the operand. After the
result is noted, the value of the operand is incremented (that is, the value 1 of
the appropriate type is added to it). The side effect of updating the stored value
of the operand occurs between the previous and the next sequence point.

The postfix -- operator is analogous to the postfix ++ operator, except that
the value of the operand is decremented (that is, the value 1 of the appropriate
type is subtracted from it).

The operand of the postfix increment or decrement operator must have scalar
type and must be a modifiable lvalue.

e.g.,

i = 0;

while (*s) /* find end of string and length */
i++, s++;

s—;

while (i) {

i—; /* reverse string s into string p */
*p++ = *s—;

}

*p = 0;

S IH-70 Section 7 - Expressions
7.4 Unary operators

unary-ex:

postfix-ex
++ unary-ex
— unary-ex

unary-operator cast-ex
sizeof unary-ex
sizeof (type-name)

unary-operator: one of
& * + - ~ !

7.4.1 Prefix increment and decrement operators

The value of the operand of the prefix ++ operator is incremented. The result
is the new value of the operand after being incremented. The expression ++E
is equivalent to (E+=l).

The prefix — operator is analogous to the prefix ++ operator, except that the
value of the operand is decremented. The expression --E is equivalent to
(E-=l).

The operand of the prefix increment or decrement operator must have scalar
type and must be a modifiable lvalue.

e.g.,

i = 0;

while (*s) /* find end of string and length */
++i, ++s;

while (i) {
— i; /* reverse string s into string p */
*p++ = *—s;
/* post-increment p! */

}
*p = 0;

Section 7 - Expressions 111-71

7.4.2 Address and indirection operators

The result of the unary & (address-of) operator is a pointer to the object or
function designated by its operand. If the operand has type T, the result has
type pointer to T.

The unary * operator denotes indirection. If the operand points to a function,
the result is a function designator; if it points to an object, the result is an lvalue
designating the object. If the operand has type pointer to T, the result has type
T. If an invalid value has been assigned to the pointer, the behavior of the
unary * operator is undefined.

If *P is an lvalue and T is the name of an object of pointer type, the cast
expression * (T) P is an lvalue that has the same type as that to which T points.
Among the invalid values for dereferencing a pointer by the unary * operator
are:

A null pointer constant;

an address inappropriatelyaligned for the type of object pointed to;

the address of an object that has automatic storage duration when
execution of the block in which the object is declared has terminated.

The operand of the unary &operator must be either:

A function designator, or

an lvalue that designates an object that is not a bit-field and is not declared
with the register storage-class specifier.

The operand of the unary * operator must have pointer type, other than
pointer to void.

e.g.,

void check_bounds(int *val_addr, int lo, int hi)
/* force object into given range lo..hi */
{ if (*val_addr < lo)

*val_addr = lo;
else if (*val_addr > hi)

*val addr = hi;

main ()

(int value = getvalueO;
check_bounds(Svalue, 0, 100)

}

7 IH-72 Section 7 - Expressions
7.4.3 Unary arithmetic operators

The result of the unary + operator is the value of its operand. The integral
promotions are performed on the operand, and the result has the promoted
type. The expression +E is equivalent to (0+E).

The result of the unary - operator is the negation of its operand. The integral
promotions are performed on the operand, and the result has the promoted
type. The expression -E is equivalent to (0-E).

The result of the ~ operator is the bitwise complement of its operand. The
integral promotions are performed on the operand, and the result has the
promoted type. The expression ~E is equivalent to (OLONG_MAX-E) if E
has type unsigned long, and (rjlNT_MAX-E) if E has any other
unsigned type.

The result of the logical negation operator ! is 0 if the value of its operand
compares unequal to 0, 1 if the value of its operand compares equal to 0. The
result has type int. The expression !E is equivalent to (0==E).

The operand of the unary + operator must have scalar type; of the unary -
operator, arithmetic type; of the ~ operator, integral type; of the ! operator,
scalar type.

e.g.,
#define ERR_FLAG 0x04 00
short FLAGS;

/* ... */

FLAGS &= ~ERR_FLAG; /* clear error flag */

if (1FLAGS) /* FLAGS is zero */
FLAGS = -1;

/ Liic cA^icobxuii \ 1 i f lluL Lilts LUIioLaiic \ J. /

7 Section 7 - Expressions 111-73
7.4.4 The sizeof operator

The sizeof operator yields the size (in bytes) of its operand, which may be
an expression or the parenthesized name of a type.

When applied to an operand that has type char, unsigned char or
signed char, the result is 1.

When applied to an operand that has array type, the result is the total
number of bytes in the array.

When applied to a parameter declared to have array or function type, the
sizeof operator yields the size of the pointer obtained by conversion.

When applied to a short int the result is 2.

When applied to an int the result is 2.

When applied to a long int the result is 4.

When applied to a float the result is 4.

When applied to a double, or long double the result is 8.

When applied to an operand that has structure or union type, the result is
the total numberof bytes in such an object, including internal and trailing
padding. Trailing padding occurs if the last field of a struct, or
union only uses 1 byte.

The size is determined from the type of the operand, which is not itself
evaluated. The result is an integer constant. The result has type size_t
defined in the <stddef .h> header.

ProsperoC will issue a warning if the operandhas side effects.

The sizeof operator may not be applied to:

An expression that has function type;

an incomplete type;

to the parenthesized name of the above two;

to a bit-field object.

eg-
int table[TABSIZE] ,

table__length,
no_of_elements;

table_length = sizeof table;
/* == TABSIZE*sizeof(int) */

no of elements = table length / sizeof table [0];

111-74 Section 7 -Expressions

7.5 Cast operators

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called a cast.

A cast changes the type of its operand. This conversion may be quiet in the
sense that no change of representation is involved (but the new type may cause
the code generator to act differently), or a change of representation may
occur.

If the type name specifies the void type, the operand must not have an
incomplete type. Otherwise, the type name must specify scalar type and the
operand must have scalar type.

A cast does not yield an lvalue.

Conversions that involve pointers (other than a pointer to void converted to
or from a pointer to an object type or an incomplete type) must be specifiedby
means of an explicit cast. A pointer may be converted to an integral type. In
Prospero C, long is the only integral type guaranteed to hold a complete
pointer. Zero (0) converts to the null pointer constant.

A pointer to an object or incomplete type may be converted to a pointer to a
different object type or a different incomplete type. The resulting pointer
might not be valid if it is improperly aligned for the type pointed to. It is
guaranteed, however, that a pointer to an object of a given alignment may be
converted to a pointer to an objectof a less strict alignmentand back again; the
result will compare equal to the original pointer. (An object that has type
char has the least strict alignment.). For example, given int *p; the
expression (int *) (char *) p will always compare equal to p.

A pointer to a function of one type may be converted to a pointer to a function
of another type and back again; the result will compare equal to the original
pointer. If a converted pointer is used to call a function of other than the
original type, the behavior is undefined.

e.g.,

void *malloc () ;

struct pair { int value;

char name[10]; } *ptr;

ptr = (struct pair *) malloc(sizeof *ptr);
*(int *) ptr = 0;

strncpy((char *) (1 + (int *) ptr), "ZERO", 10);

cast-ex:

unary-ex

(type-name) cast-ex

Section 7 -Expressions 111-75

7.6 Multiplicative operators

The result of the binary * operator is the product of the operands. The binary
* operator is commutative and associative.

The result of the / operator is the quotient from the division of the first
operand by the second; the result of the %operator is the remainder.

When integers are divided and the division is inexact, if both operands are
positive theresult of the / operator is the largest integer less than the algebraic
quotient and the result of the %operator is positive. If either operand is
negative, the result of the /(divide) operator is the smallest integer greater
than the algebraic quotient. The magnitude of a/b is the integer given by
abs (a) /abs (b). If the two operands have the same sign then the result is
positive, otherwise it is negative. If one operand is negative the sign of the
result of the %operator is negative. If the quotient a/b is representable, the
following expression is true:

(a/b)*b + a%b == a

Each of the operands must have arithmetic type. The operandsof the
%operator must have integral type.

The usual arithmetic conversions are performed on the operands.

multiplicative-ex :
cast-ex

multiplicative-ex * cast-ex
multiplicative-ex / cast-ex
multiplicative-ex %cast-ex

* HI-76 Section 7 - Expressions
7.7 Additive operators

The result of the binary + operator is the sum of the operands. The binary +
operator is commutative and associative.

The result of the binary - operator is the difference resulting from the
subtraction of the second operand from the first.

When an expression that has integral type is added to or subtracted from a
pointer, the integral value is first multiplied bythesize of the object pointed to.
The result is a pointer of the same type as the original pointer. If the original
pointer points to a member of an array object, and the array is large enough,
the result points to another member of the same array object, appropriately
offset from the original member. Thus if P points to a member of an array
object, the expression P+l points to the next member of the array object.
Unless both the pointer operand and the result point to a member of the same
array object, the behavior if the result is used as the operand of a unary *
operator is undefined.

When two pointers to members of the same array object are subtracted, the
difference is divided by the size of a member. The result represents the
difference of the subscripts of the two array members. The result has type
ptrdiff_t defined in the <stddef .h> header. If two pointers that do
not point to members of the same array object are subtracted, the behavior is
undefined. However, if p points to the last member of an array object, the
expression (P+l) - p has the value 1, even though P+l does notpoint to a
member of the array object.

For addition, either both operands must have arithmetic type, or one operand
must be a pointer to an object and the other must have integral type
(incrementing isequivalent toadding 1).

For subtraction, one of the following musthold:

Both operands havearithmetic type.

Both operands are pointers toobjects that have the same type.

The left operand is a pointer to an object and the right operand has
integral type (decrementing is equivalent to subtracting 1).

If both operands have arithmetic type, the usual arithmetic conversions are
performed on them.

I

I

Section 7 - Expressions 111-77

e.g.,

int table[TABSIZE],
pos, ix;

struct { int *start, end;

} index[INDEXSIZE];

#define NEXT 0

Idefine LENGTH 1

#define DATA 2

/*

table represents a linked list of variable length
data blocks held as an array of pseudo structures:

struct {

int offset; of next entry
int length; of this data block
int data[]; incomplete array!!

}

BASELOC is first entry to be indexed
table[NEXT] retrieves the offset field

table[LENGTH] retrieves the length field
table[DATA] is Oth element of data field

*/

pos = BASELOC;

for (ix = 0; pos > 0; ix++) {
index[ix] .start = Stable [pos + DATA];
/* zeroth data element */

index[ix].end = index[ix] + table[pos + LENGTH];
/* all data before that address */
pos = table[pos + NEXT];
/* advance to next logical block */

}

additive-ex:

multiplicative-ex
additive-ex + multiplicative-ex
additive-ex - multiplicative-ex

111-78 Section 7 - Expressions

7.8 Bitwise shift operators

The result of El « E2 is El left-shifted E2 bit positions; vacated bits are
filled with zeros. If El has an unsigned type, the value of the result is El
multiplied by (2 raised to the power E2), which is then reduced modulo
ULONG_MAX+l if El has type unsigned long, and DINT_MAX+1
otherwise. (The constants DLONG_MAX and oint_max are defined in the
header <limits .h> - see Appendix G.)

The result of El » E2 is El right-shifted E2 bit positions. If El has an
unsigned type or if El has a signed type and a non-negative value, the value of
the result is the integral part of the quotient of El divided by (2 raised to the
power E2). If El has a signed type and a negative value, the vacated bits fill
with the same bit value as the original top most bit.

The integral promotions are performed on each of the operands. Then the
right operand is converted to int; the type of the result is that of the
promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width in bits of the promoted left operand, the
behavior is undefined.

Each of the operands must have integral type.

e.g.,

unsigned long date_time;
/* year (base 1980), month, day, hours, mins, sees:

YYyYYYMMMMDDDDDhhhhhmmmmmmss ss s s */

date_time =
(hours « 12) I (minutes << 6) I seconds I

((unsigned long)
((year-1980 « 9) I (month « 5) | day) « 17);

shift-ex:
additive-ex

shift-ex « additive-ex
shift-ex » additive-ex

7 Section 7 - Expressions HI-79
7.9 Relational operators

When two pointers are compared, the result depends on the relative locations
in the address space of the objects pointed to. If the objects pointed to are
members of the same aggregate object:

Pointers to structure members declared later compare higher than
pointers to members declared earlier in the structure.

Pointers to array elements with larger subscript values compare higher
than pointers to elements of the same array with lower subscript values.

All pointers to members of the same union object compare equal.

If the objects pointed to are not members of the same aggregate or union
object, the result is undefined, with the following exception. If P points to the
last member of an array object, the pointer expression P+l compares higher
than P, even though P+l does not point to a member of the array object.

Each of the operators < (less than), > (greater than), <= (less than or equal to),
and >= (greater than or equal to) yield 1 if the specified relation is true and 0 if
it is false. The result has type int.

Either both operands must have arithmetic type, or both must be pointers to
objects that have the same type.

If both of the operands have arithmetic type, the usual arithmetic conversions
are performed.

Note: Relational comparisons with the null pointer constant are illegal. In
order to provide compatibility with existing code, Prospero C will only treat
this case as a warning if the S option is off.

relational-ex:

shift-ex
relational-ex < shift-ex
relational-ex > shift-ex
relational-ex <= shift-ex
relational-ex >= shift-ex

f HI-80 Section 7 - Expressions
7.10 Equality operators

The == (equal to) and the != (not equal to) operators are analogous to the
relational operators except for their lower precedence.

If two pointers to objects or pointers to incomplete types compare equal, they
point to the same object. If two pointers to functions compare equal, they point
to the same function. If one of the operands is a pointer to an object (or pointer
to an incomplete type) and the other has type pointer to void, the pointer to
an object (or pointer to an incomplete type) is converted to type pointer to
void.

One of the following must hold:

Both operands have arithmetic type.

Both operands are pointers to the same type.

One operand is a pointer to an object and the other is a pointer to void.

One operand is a pointer and the other is a null pointer constant.

e.g.,
void *malloc(),

*mem_base;
struct list *head; /* fields value, next */

mem_base = malloc(sizeof *head);
head = (struct list *) mem_base;

/* ... */

while (head != mem_base &&
head != 0 && head->value != search_val)

head = head->next;

equality-ex:
relational-ex

equality-ex == relational-ex
equality-ex != relational-ex

Section 7 - Expressions HI-81

7.11 Bitwise AND operator

The result of the binary &operator is the bitwise AND of the operands (that is,
each bit in the result is set if and only if each of the corresponding bits in the
converted operands are set). The binary & operator is commutative and
associative.

Each of the operands must have integral type.

The usual arithmetic conversions are performed on the operands.

AND-ex:

equality-ex
AND-ex & equality-ex

7.12 Bitwise exclusive OR operator

The result of the Aoperator is the bitwise exclusive OR of the operands (that
is, each bit in the result is set if and only if exactly one of the corresponding
bits in the converted operands is set). The A operator is commutative and
associative.

Each of the operands must have integral type.

The usual arithmetic conversions are performed on the operands.

exclusive-OR-ex:

AND-ex

exclusive-OR-ex A AND-ex

7.13 Bitwise inclusive OR operator

The result of the | operator is the bitwise inclusive OR of the operands (that is,
each bit in the result is set if and only if at least one of the corresponding bits in
the converted operands is set). The | operator is commutative and associative,
and an expression involving several | operations at the same level may be
regrouped.

Each of the operands must have integral type.

The usual arithmetic conversions are performed on the operands.

inclusive-OR-ex:

exclusive-OR -ex

inclusive-OR-ex | exclusive-OR-ex

7 HI-82 Section 7 - Expressions
7.14 Logical AND operator

The && operator yields 1 if both of its operands compare unequal to 0,
otherwise it yields 0. The result has type int. Unlike the bitwise binary £
operator, the ss operator guarantees left-to-right evaluation; there is a
sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated. Each of the operands
must have scalar type.

e.g.,

i = (m == n) && (o == p);

is equivalent to:

if (m == n)

if (o == p)
i = 1;

else

i = 0;

else i = 0;

logical-AND-ex:
inclusive-OR-ex

logical-AND-ex && inclusive-OR-ex

7.15 Logical OR operator

The | | operator will yield 1 if either of its operands compare unequal to 0,
otherwise it yields 0. The result has type int. Unlike the bitwise | operator,
the i | operator guarantees left-to-right evaluation; there is a sequence point
after the evaluation of the first operand. If the first operand compares unequal
to 0, the second operand is not evaluated. Each operand must have scalar type.

e.g.,

i = (m == n) | I (o == p) ;

is equivalent to:

if (m == n)

i = 1;
else

if (o == p)

i = 1;
else

i = 0;

logical-OR-ex:
logical-AND-ex
logical-OR-ex | | logical-AND-ex

7 Section 7 - Expressions 111-83
7.16 Conditional operator

The condition operator causes either its second or third operand to be
evaluated, depending on the value of its first operand. The first operand is
evaluated; there is a sequence point after its evaluation. If its value compares
unequal to 0, the second operand is evaluated and its value is the result;
otherwise the third operand is evaluated and its value is the result.

A conditional expression does not yield an lvalue.

If both the second and third operands have arithmetic type, the usual arithmetic
conversions are performed to bring them to the same type and the result has
that type. If both the operands have structure, union, or pointer type, the result
has that type. If both the operands are void expressions, the result is a void
expression. If one of the operands is a pointer to an object or incomplete type
and the other is a pointer to void the pointer to an object or incomplete type
is converted to type pointer to void, and the result has that type. If one
operand is a pointer and the other operand is a null pointer constant, the result
has the type of the pointer.

The first operand must have scalar type.

One of the following must hold for the second and third operands:

Both operands have arithmetic type.

Both operands are pointers to the same type.

Both operands have the same structure or union type.

Both operands are void expressions.

One operand is a pointer to an object or incomplete type, and the other is a
pointer to void.

One operand is a pointer and the other is a null pointer constant.

e.g.,

max = a > b ? a : b;

select = (y ? si : s2).f;
ptr = count > 0 ? src_ptr : NULL;

conditional-ex:

logical-OR-ex
logical-OR-ex ? ex : conditional-ex

7 111-84 Section 7 - Expressions
7.17 Assignment operators

An assignment operator stores a value in the object designated by the left
operand. An assignment expression has the type of the left operand and the
value of the left operand after the assignment. The side effect of updating the
stored value of the left operand must occur between the previous and the next
sequence point.

In an assignment statement, Prospero C evaluates the left operand first,
followed by the right operand. In an assignment expression the right operand
is evaluated first then the left operand.

The left operand must be a modifiable lvalue.

The result is not an lvalue.

assignment-ex:
conditional-ex

unary-ex assignment-operator assignment-ex

assignment-operator: one of
= *= /= %= += -= «= »= &= *= | =

7.17.1 Simple assignment

In the simple assignment with =, the value of the right operand is converted to
the type of the left operand and replaces the value stored in the object
designated by the left operand.

If an object is assigned to another object that overlaps in storage with any part
of the object whose value is being assigned, the behavior is undefined.

One of the foliowin0 must hold:

Both operands have arithmetic type.

Both operands have the same structure or union type.

Both operands are pointers to the same type.

One operand is a pointer to an object or incomplete type and the other is a
pointer to void.

The left operand is a pointer and the right is a null pointer constant.

Both operands are pointers to types that differ only in the presence or
absence in the right operand of the type specifiers const or
volatile or both.

Section 7 -Expressions 111-85

The rules for const objects and volatile objects must be obeyed when
the object is referred to by means of the pointer to const or volatile (or
both).

e.g.,

i = 0;

a[i] = ++i - 1; /* a[0] - 0, i = 1 */
i = (a[i] = ++i) - 1; /* a[2] =2, i = 1 */
a[i] = (a[i] = ++i) - 1; /* a[l] = 1, a[2] = 2,

i = 2 */

In the program fragment:

int i ;

char c;

/*...*/
/*...*/ ((c = i) == -1) /*...*/

the int value i may be truncated when stored in the char, and then
converted back to int width prior to the comparison.

7.17.2 Compound assignment

A compound assignment of the form El op= E2 differs from the simple
assignment expression El = El op +(E2) only in that the lvalue El is
evaluated only once. For the operators += and -= only, either the left operand
must be a pointer to an object type and the right must have integral type, or the
operands must have arithmetic type.

For the other operators, each operand must have arithmetic type consistent
with those allowed by the corresponding binary operator.

Note: The unary increment operator (++) and decrement (--) operators are
also assignment operators, i.e., —-i is equivalent to (i-=l).
e.g.,

int *p;
long count;
short FLAG;

while (*p == ENTRY)
p += ENTRY_LEN;

count /= 4;

FLAG |= err bits;

* 111-86 Section 7 - Expressions

7.18 Comma operator

The left operand of a comma operator is evaluated as a void expression;
there is a sequence point after its evaluation. Then the right operand is
evaluated; the result has its type and value.

A comma operator does not yield an lvalue.

As indicated by the syntax, in contexts where a comma is a punctuator (in lists
of arguments to functions and lists of initializers) the comma operator as
described here may appear only in parentheses. In the function call:

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

e.g.,
val = (index += offset,

table[index] + table[index+1]);

expression:
assignment-ex
expression , assignment-ex

7.19 Constant expressions

A constant expression is any integral expression that can be evaluated to a
single value in the translation environment.

A constant expression may not cause side-effects.

Note: Because the operands to sizeof are not evaluated, it is possible to use
non-constant expressions in this context. These include: the function-call
operator (), the increment or decrement operator ++ or --, an assignment
operator, a comma operator, the array-subscript [] and member-access . and
-> operators, the address &and indirection * unary operators, and arbitrary
casts.

The operands in an integral constant expression may consist only of integer,
enumeration, and character constants, sizeof expressions, and casts of
arithmetic types to integral types.

Section 7 - Expressions 111-87

More latitude is permitted for constant expressions in initializers. Floating
constants and arbitrary casts may also be used. Lvalues designating objects that
have static storage duration or function designators may also be used to specify
addresses, explicitly with the unary &operator, or implicitly, for expressions
of array or function type.

e.g.,

static int dbl_size = sizeof(double),
a[4],

*P = &a[2];

Further constraints that apply to the integral constant expressions used in
conditional-inclusion preprocessing directives are discussed in section 9.4

constant-expression:
conditional-expression

~7 IH-88 Section 8 - Statements
8 STATEMENTS

There are two forms a statement may take:

Simple statement. Because the '=' token is an operator in C, assignment
can be viewed as an expression with side effects. ,

Compound statements. Theseprovide such constructs as loops and multi-
way branches.

I
statement:

labelled-statement

compound-statement
expression-statement
jump-statement
selection-statement

iteration-statement

8.1 Labelled statements

Any statement may be preceded by a prefix that declares an identifier as a label
name.

Prospero C will give a warning if a label is not the destination of a goto
statement within the function.

The case and default labels may only appear within the body of a
switch statement (see 8.5.2).

labelled-statement:

identifier : statement
case constant-ex : statement

default : statement

8.2 Compound statement, or block

A "compound statement" (also called a "block") allows a set of statements to be
grouped into one syntactic unit, which may have its own set of declarations and
initializations The initializers of objects that have automatic storage duration
are evaluated and the objects are initialized in the order they appear in the
translation unit.

!

I

I

I

i

Section 8 - Statements 111-89

A compound statement causes a new scope to be opened. It is possible to
declare new variables, typedefs and tags in this new scope. A compound
statement may also include a series of statements. Prospero C calculates the
maximum amount of storage required by all blocks (nested blocks adding to
the outer enclosing block). This storage is allocated when the function is
entered.

An object declared with the keyword extern inside a block may not be
initialized in the declaration. This is because storage for it is defined
elsewhere.

eg-
for (i = 0; i < NROWS; i++) {

int row_total = 0;
for (j = 0; j < NCOLS; j++)
row_total += matrix[i][j];
printf("row %d total is %d\n", i, row_total)

}

compound-statement:
{ declaration-listop, statement-list^, }

declaration-list:

declaration

declaration-list declaration

statement-list:

statement

statement-list statement

~~7 HI-90 Section 8 - Statements
8.3 Expression and null statements

The expression in an expression statement is evaluated as a void expression
for its side effects.

A null statement (consisting of just a semicolon) performs no operations.

If a function call is evaluated as an expression statement for its side effects
only, the discarding of its value may be made explicit (it is not mandatory) by
converting the expression to a void expression by means of a cast:

e.g.,
int p (int);
/*...*/
(void) p(0);

In the program fragment:

char *s;

/*...*/
while (*s++ != '\n')

a null statement is used to supply an empty loop body to the iteration statement.

expression-statement:
expressionopl ;

8.4 Jump statements

A jump statement causes an unconditional jump to another place.

Because Prospero C performs syntax and semantic analysis in a single pass any
missing labels are not detected until the end of the function in which they are
referenced.

jump-statement:
goto identifier ;
continue ;
break ;

return expressionopt ;

c

I

I

I

^r Section 8 - Statements 111-91
8.4.1 The goto statement

A goto statement causes an unconditional jump to the named label in the
current function.

8.4.2 The continue statement

A continue statement causes a jump to the loop-continuation portion of the
smallest enclosing iterationstatement; that is, to the end of the loop body.

e.g.,

for (i=l; i++; i<10)

{
if (a[i+l]==l)

continue;

a[i+l]=0;

/* continue arrives here */

}

while (i)

{

switch (i)

{
case 1: if (a[i+2]==2)

continue;

a[i+2]=0;

case 2: if (a[i+3]==3)

continue;

a[i+3]=0;

default :

}
a[i+4]=0;

/* continue arrives here */

}

y HI-92 Section 8 - Statements
8.4.3 The break statement

A break statement terminates execution of the smallest enclosing switch
or iteration statement.

e.g.,

switch (k)

{
case 0: for (i=l; i++; i<10)

{ for (j=l; j++; j<10)
if (j==5)

break; /* terminate j loop */
else

a[i+j]=0;
if (a[i+5]==6)

break; /* terminate i loop */

}

/* fall through */

case 1: switch (1)

{
case 0: a[l]=0; /* fall through */
case 1: a[2]=0;

break; /* terminate 1 switch */

default :

}
break; /* terminate k switch */

}

8.4.4 The return statement

A return statement terminates execution of the current function and returns

control to its caller. A function may have any number of return statements,
with and without expressions.

If a return statement with an expression is executed, the value of the
expression is returned to the caller. If the expression has a type different from
that of the function in which it appears, it is converted as if it were assigned to
an object of that type.

!

I

I

I

I

i

I

Section 8 - Statements 111-93

If a return statement without an expression is executed, and the value of the
function call is used by the caller, the behavior is undefined. Reaching the }
that terminates a function is equivalent to executing a return statement
without an expression.

In Prospero C, the storage (if any) for the return value is allocated in the
calling function.

e.g.,

int fl()
{ int i;

/* code */

return i;

}

struct s f2()

{ struct s vl;

/* code */

if (a[6]==9)

return vl;

/* change vl */

return vl;

111-94 Section 8 - Statements

8.5 Selection statements

A selection statement selects among a set of statements depending on the value
of a controlling expression.

selection-statement:

if (expression) statement
if (expression) statement else statement
switch (expression) statement

8.5.1 The if statement

In both forms, the first substatement is executed if the expression compares
unequal to 0. In the else form, the second substatement is executed if the
expression compares equal to 0. If the first substatement is reached via a label,
the second substatement is not executed.

The controlling expression of an if statement must have scalar type.

An else is associated with the lexically immediately preceding else-less
if that is in the same block (but not in an enclosed block).

Note: The controlling expression must be enclosed in parentheses,

e.g.,

if (index < TABSIZE)
{ if (table[index])

zero++;

}
else

puts ("Error: index out of bounds");

8.5.2 The switch statement

A switch statement causes control to jump into the statement that is the
"switch body", depending on the value of a controlling expression and the
values of any case prefixes in the switch body. A case or default label
(cf. section 8.1) is accessible only within the closest enclosing switch
statement.

The integral promotions are performed on the controlling expression. The
constant expression in each case label is converted to the type of the
promoted controlling expression. If a converted value matches that of the
promoted controlling expression, control jumps to the statement following the
matched case prefix. Otherwise, if there is a default label, control jumps
to the labelled statement. If no converted case constant matches and there is
no default label, none of the statements in the switch body is executed.

Section 8 - Statements IH-95

In Prospero C the number of case labels in a switch statement is limited
only by the amount of memory available.

The controlling expression of a switch statement and the constant
expression of each case label must have integral type. No two of the case
constants in the same switch statement may have the same value after
conversion. There may be at most one default label in a switch
statement.

e.g.

switch (error_level)
{

case 0 :

case 1 : warnings++;
/* fall through */

case 2 : errors++;

printf("Error (level %d) : %s\n",
error_level, error_msg);

break;

default : puts("FATAL error");

exit()

}

switch (val ue)

default :

if (value > 5)

case 0 :

case 1 : value = 0;

else

case 9 : value = 1;

/* value is set to 1 if it was originally
2, 3, 4, 5 or 9 (or negative)
or set to 0 if it was originally
0, 1, 6, 7, 8 or greater than 9

*/

^T IH-96 Section 8 - Statements
8.6 Iteration statements

An iteration statement causes a statement called the "loop body" to be executed
repeatedly until the controlling expression compares equal to 0.

The controlling expression of an iteration statement must have scalar type.

iteration-statement:

while (expression) statement
do statement while (expression) ;
for (exprop, ; exprop, ; exprop,) statement

8.6.1 The while statement

The evaluation of the controlling expression takes place before each execution
of the loop body. '

I
while (index < TABLE_SIZE)

if (table[index] = key)
break;

else '
index++;

I
8.6.2 The do statement

The evaluation of the controlling expression takes place after each execution of
the loop body.

e.g.

do {

ch = getchar();
switch (ch)

{ /* ... */

}
} while (ch != 'Q');

I

"^ Section 8 - Statements IH-97
8.6.3 The for statement

Except for the behavior of a continue statement in the loop body, the
statement

for (ex-1 ; ex-2 ; ex-3) statement

and the sequence of statements:

ex-1 ;

while (ex-2) {
statement

/* continue in for-loop would arrive here... */
ex- 3 ;

/* ...but continue in while-loop arrives here */
}

are equivalent.

Thus ex-1 specifies initialization for the loop; ex-2, the controlling
expression, specifies an evaluation made before each iteration, such that
execution of the loop continues until the expression compares equal to 0;
ex-3 specifies an operation (such as incrementing) that is performed after
each iteration.

Both ex-1 and ex-3 may be omitted, or may have any type, or may be void
expressions. If ex-2 is omitted, it is treated as if a non-zero constant had been
written, i.e., the loop condition is always true.

7 HI-98 Section 9 - The Preprocessor
9 THE PREPROCESSOR

9.1 Introduction

The C preprocessor is a macro preprocessor that processes tokens from the
source text file before passing them onto the syntax phase of the compiler
proper. The preprocessor is responsible for translation phases 1 to 7 (see
section 2.2), and yields a stream of preprocessed tokens to the syntax analyzer.
The listing file produced when the L option is specified represents the token
stream emitted from the preprocessor.

Although the Prospero C preprocessor is an integral part of the compiler Pass
1 it should conceptually be thought of as a separate entity.

e.g., the following sequence of characters:

OK <h3/l .2>=x+++b

finclude <2/1.3x>
#define struct.field $

forms the following sequence of preprocessing tokens (each individual
preprocessing token is delimited by a { on the left and a } on the right).

{01} {<} {<} {h3} {/} {1.2} {>=} {x} {++} {+} {b}
{#} {include} {<2/1.3x>}
{#}{define} {struct}{.} {field} {$}

9.2 Preprocessing directives

A preprocessing directive is a command to the preprocessor. It is begun by a #
preprocessing token that is the first non-white-space character on the source
line.

The # is optionally followed by one of the following preprocessor directives:

define

undef

if

ifdef

ifndef

elif

else

endif

include

line

error

pragma

Section 9 - The Preprocessor HI-99

9.3 Defining a macro

The fdefine directive is used to associate a meaningful name with a
number, identifier, or expression. It may also be used to aid portability and
enhance program readability without sacrificing performance.

There are two types of macros: those without parameters, object-like macros;
and those with parameters, function-like macros.

Object-like macro Defines an object-like macro that causes each
subsequent instance of the macro name to be
replaced by the replacement list of
preprocessing tokens that constitute the
remainder of the directive. The replacement
list is then rescanned for more macro names

as specified below.

Idefine BUFLEN 512

#define TRUE 1

#define forever while (TRUE)

define identifier replacement-list new-line

Function-like macro Defines a function-like macro with arguments,
similar syntactically to a function call. The
parameters are specified by the optional list of
identifiers, whose scope extends until the new-
line character that terminates the #define
preprocessing directive.

#define square(x) ((x) * (x))
#define setbit (x, y) ((x) |= 1 << (y))

define ident (ident-listop,) replace-list new-line

The identifier immediately following the define is called the "macro
name". Any white-space characters preceding or following the replacement
list of preprocessing tokens are not considered part of the replacement list for
either form of macro.

The number of arguments in an invocation of a function-like macro must agree
with the number of parameters in the macro definition, and be followed by a)
preprocessing token that terminates the invocation.

7 HI-100 Section 9 - The Preprocessor
9.3.1 Redefining a macro name

It is an error to redefine a name already defined as a macro name unless the
replacement lists are identical. In the case of a function-like macro the
parameters must also be identical in spelling and number.

Two replacement lists are identical if and only if the preprocessing tokens in
both have the same number, ordering, spelling, and white-space separation (all
white-space separations are considered identical).

e.g., the following sequence is valid:

#define BUFLEN 512

#define max(a, b) ((a)>(b) ? (a) : (b))

#define BUFLEN 512

#define max(a,b) ((a)>(b) ? (a) : (b))

but the following redefinitions are invalid:

#define BUFLEN 256

#define max 100

#define max(x,y) ((x)>(y) ? (x) : (y))
fdefine max(a,b) ((a)>(b) ?(a) : (b))

9.3.2 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding
iundef directive is encountered or (if none is encountered) until the end of
the translation unit.

A preprocessing directive of the form:

undef identifier new-line

causes the specified identifier to be no longer defined as a macro name. It is
ignored if the specified identifier is not currently defined as a macro name. If
the S (strict) flag is enabled Prospero C will give a warning message if an
attempt is made to undef an identifier that is not defined as a macro.

Section 9 - The Preprocessor III-101

9.3.3 Macro replacement

During translation phase 4 each token is checked to see if it is identical to a
defined name. If it does match a macro name it is replaced by the body of that
macro name as follows:

Object-like macros.
The token is replaced by the token list making up the body of the macro
name.

Function-like macros.

If the macro name is followed by a (token, the tokens between the
matching opening and closing parenthesis constitute the parameters of the
macro invocation. Individual arguments between the outermost
parenthesis are separated by comma tokens (comma preprocessing tokens
bounded by nested parenthesis do not separate arguments). Within the
sequence of preprocessing tokens making up an invocation of a function
like macro, new-line is considered a white-space character.

Prospero C gives a warning (or an error if the S option is in force) if
more arguments are given in an occurrence than its definition. The extra
arguments are discarded. Prospero C gives an error if insufficient
arguments are supplied. A function-like macro name not followed by a (
token is treated as an identifier, and left unchanged by the preprocessor.

Given the previous legal macro definitions, the following fragments:

char buffer[BUFLEN];

forever { do_next_char(); }
num = square(num);

setbit(flag, 4);

expand to the following:

char buffer[512];

while (1) {do_next_char(); }
num = ((num) * (num)) ;

((flag) |= 1 « (4)) ;

f IH-102 Section 9 - The Preprocessor
9.3.4 Argument substitution

After the arguments for the invocation of a function-like macro have been
identified, argument substitution takes place. A parameter in the replacement
list, unless preceded by a # or ## preprocessing token or followed by a ##
preprocessing token (see sections 9.3.6 and 9.3.7), is replaced by the
corresponding argument after all macros contained therein have been
expanded. The argument's preprocessing tokens are completely macro
replaced as if they formed the rest of the source file.

9.3.5 Rescanning and further replacement

After all parameters in the replacement list have been substituted, the resulting
preprocessing token sequence is rescanned with the rest of the source file's
preprocessing tokens for more macro names to replace.

If the name of the macro being replaced is found during this scan of the
replacement list (not including the rest of the source file's preprocessing
tokens), it is not replaced. Further, if any nested replacements encounter the
name of the macro being replaced, it is not replaced. These non-replaced
macro name preprocessing tokens are no longer available for further
replacement even if they are later (re)examined in contexts in which that
macro name preprocessing token would otherwise have been replaced.

e.g.

#define A ABC

#define B B C A

#define C CAB

A

/* expands to... */
ABC

/* rescan: A is not expanded... */
A { B C A } {CAB}

/* rescan of B: A and B not expanded... */
A{B{CAB}A} {CAB}
/* no further expansion possible in B */
/* rescan of C: A and C not expanded... */
ABCABA{CABCA}
/* no further expansion possible in C */
ABCABACABCA

/* ...which is the result */

I

7 Section 9 - The Preprocessor III-103
The following defines a function-like macro whose value is the maximum of its
arguments. It has the advantages of working for any compatible types of the
arguments and of generating in-line code without the overhead or function
calling. It has the disadvantages of evaluating one or the other of its arguments
a second time (including side effects) and of generating more code than a
function if invoked several times.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are
bound properly.

To illustrate the rules for substitution and reexamination, the sequence:

#define pair(x,y) (x->next = y)
#define last(q) (q->next ? last(q->next) : q)

pair (a,b);
pair(a, pair(b, c));
a = last(c);

a = last(last(b));

pair(a, last (c)) ;
b = last(pair(a, c)) ;

results in:

(a->next = b);

(a->next = (b->next = c));

a = (c->next ? last (c->next) : c);
a = ((b->next ? last (b->next) : b)->next ?

last((b->next ? last(b->next) : b)->next) :

(b->next ? last(b->next) : b));

(a->next = (c->next ? last (c->next) : c));

b = ((a->next = c)->next ? last ((a->next = c)

->next) : (a->next = c));

The name following the # preprocessing token that appears to begin a
preprocessing directive is not subject to macro replacement, even if it has been
defined as a macro name.

#define include error

#include "inc.h" /* still includes inc.h */

The resulting completely macro-replaced preprocessing token sequence is not
processed as a preprocessing directive even if it resembles one.

Ill-104 Section 9 - The Preprocessor

9.3.6 The # operator

If, in the replacement list, a parameter is immediately preceded by a #
preprocessing token, both are replaced by a single string literal preprocessing
token that contains the spelling of the preprocessing token sequence for the
corresponding argument. Each occurrence of white space between the
argument's preprocessing tokens becomes a single space character in the string
literal. White space before the first preprocessing token and after the last
preprocessing token comprising the argument is deleted. Otherwise, the
original spelling of each preprocessing token in the argument is retained in the
string literal. Special handling is required to produce the spelling of string
literals and character constants: a \ character is inserted before each " and \
character of a character constant or string literal (including the delimiting "
characters).

Each # preprocessing token in the replacement list for a function-like macro
must be followed by a parameter as the next preprocessing token in the
replacement list.

Section 9 - The Preprocessor III-105

9.3.7 The ## operator

If, in the replacement list, a parameter is immediately preceded or followed by
a ## preprocessing token, the parameter is replaced by the corresponding
argument's preprocessing token sequence.

For both object-like and function-like macro invocations, before the
replacement list is re-examined for more macro names to replace, each
instance of a ## preprocessing token in the replacement list (not from an
argument) is deleted and the preceding preprocessing token is concatenated
with the following preprocessing token. If the result is not a valid token, the
behavior is undefined. The resulting token is available for further macro
replacement.

To illustrate the rules for creating string literals and concatenating tokens, the
sequence:

#define

#define

str(x)

xstr(x)

#x

str (x)

#define

#define

#define

VERSION

header(v)

incfile(v)

2

xstr(incv ## v)

header(v.h)

str (hell

str(l)

str(str(

xstr(str

♦include

o)

?))

(?))
incfile(VERSION)

Its in:

"hello"
n | n

"str (?) "

"\ "?\ "

♦include

Tl

"incv2. h"

See section 9.5 for a full description of the lexical rules governing the
characters in a filename in a tfinclude directive.

Space around the # and ## tokens in the macro definition is optional.

A ## preprocessing token may not occur at the beginning or at the end of a
replacement list for either form of macro definition.

* HI-106 Section 9 - The Preprocessor

9.4 Conditional inclusion

The preprocessor can be used to selectively include/exclude lines of input
source from further processing by the compiler.

#if const-expr
group-of-linesl
false

group-of-linesl
#endif

If the const-expr is zero the text group-of-linesl is skipped; the text group-of-
lines2 is processed and passed on to the compiler. If the const-expr has a non
zero value group-of-linesl is processed while group-of-Iines2 is skipped.

It is possible to nest #if directives. The preprocessor matches #elses,
#elifs and #endifs.

For nested #if , #else and #endif directives the #elif may be used:

if constant-ex new-line group ,
else

if constant-ex new-line group0,

can be replaced by:

if constant-ex new-line groupop,
elif constant-ex new-line group ,

Preprocessing directives of the forms:

ifdef identifier new-line group• ,
ifndef identifier new-line groupop,

check whether the identifier is or is not currently defined as a macro name.
Their conditions are equivalent to #if defined identifier and #if
!defined identifier respectively.

Each directive's condition is checked in order. If it evaluates to false (zero),
the group that it controls is skipped: directives are processed only as far as the
name that determines the directive in order to keep track of the level of nested
conditionals; the rest of the directives' preprocessing tokens are ignored, as are
the other preprocessing tokens in the group. Only the first group whose
control condition evaluates to true (non-zero) is processed. If none of the
conditions evaluates to true, and there is a #else directive, the group
controlled by the #else is processed; lacking a false directive, all the
groups until the #endif are skipped.

Section 9 - The Preprocessor III-107

The expression must be an integral constant expression that must not contain a
sizeof operator, a cast, or an enumeration constant. However, it may
contain unary expressions of the form:

defined identifier

or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that
is, if it has been the subject of a #define preprocessing directive without an
intervening #undef directive), 0 if it is not.

Note: Superficially the folding of constant expressions is always done in long
or unsigned long mode. However, some operators produce int results
i.e., relational operators. Combinations of these can result in some expression
evaluation being done in int mode.

9.4.1 Evaluating constant expressions

Prior to evaluation, identifiers currently defined as macro names are replaced
(except for those identifiers modified by defined) in the list of
preprocessing tokens just as in normal text. After all replacements are finished
and just before the evaluation of the controlling constant expression, all
remaining identifiers are replaced with 0L and each integer constant not
already suffixed with 1 or L is considered to be additionally suffixed with L.
During the evaluation of the expression the usual arithmetic conversions apply.
This includes interpreting character constants, which may involve converting
escape sequences into characters. The numeric value for these character
constants matches the value obtained when an identical character constant

occurs in an expression that is not constant folded.

7 HI-108 Section 9 - The Preprocessor
9.5 Source file inclusion

A preprocessing directive of the form:

include <h-char-sequence> new-line

where h-char-sequence is a sequence of characters other than > or newline,
causes the replacement of that directive by the entire contents of the source file
identified by the specified character sequence between the the < and >
delimiters and a set of pathnames and causes the replacement of that directive
by the entire contents of the header. If the characters \ , " , or * occur in the
character sequence, the behavior is undefined.

Prospero C allows #include files to be nested to a depth limited only by the
amount of memory available. Recursive #includes (a.h includes b.h
includes a.h ...) are allowed. The recursion will be broken, and a warning
message given, if the same file is included more than four times.

If the characters /*, or */ occur in the character sequence, the behavior is
undefined.

A preprocessing directive of the form:

include "q-char-sequence" new-line

where q-char-sequence is a sequence of characters other than " or newline,
causes the replacement of that directive by the entire contents of the source file
identified by the specified character sequence between the " delimiters. The
named source file is searched for in association with the original source file. If
the search fails, the directive is reprocessed as if it read:

include <h-char-sequence> new-line

with the identical contained character sequence (including > characters, if any)
from the original directive.

A preprocessing directive of the form:

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The
preprocessing tokens after include in the directive are processed just as in
normal text. (Each identifier currently defined as a macro name is replacedby
its replacement list of preprocessing tokens.) The directive resulting after all
replacements must match one of the two previous forms.

Section 9 - The Preprocessor IH-109

The sequence of preprocessing tokens between a < and a > preprocessing token
pair is combined into a single header name preprocessing token by replacing
each sequence of white space between pairs of preprocessing tokens in the
sequence by a single space character, deleting any white space between the <
and the next preprocessing token and between the > and the previous
preprocessing token, and replacing each contained preprocessing token by its
spelling, i.e., to form a single token between the < and > delimiters, the glue
operator ## must be used as tokens are not implicitly concatenated.

e.g.,

#if STDC_
fdefine header stdio ## . ## h

#else

♦define header extio ## . ## h

#endif

#define incname < header >

#include incname

For more complex examples of macro-replaced #includes, see the sections
on # and ## operators above (sections 9.3.6 and 9.3.7).

7 III— 110 Section 9 - The Preprocessor
9.6 Line control

The "line number" of the current source line is one greater than the number of
new-line characters read or introduced in translation phase 1 (while processing
the source file to the current token)

A preprocessing directive of the form:

line digit-sequence new-line

causes Prospero C to behave as if the line number of the next source line is
specified by the digit sequence (interpreted as a decimal integer).

A preprocessing directive of the form:

line digit-sequence string-literal new-line

sets the line number similarly and changes the presumed name of the source
file to be the characters contained within the string literal.

A preprocessing directive of the form:

line pp-tokens new-line

allows the digit-sequence and string-literal to be generated via macro names.
The preprocessing tokens after line on the directive are processed just as in
normal text (each identifier currently defined as a macro name is replaced by
its replacement list of preprocessing tokens). The directive resulting after all
replacements must match one of the two previous forms.

9.7 Error directive

A preprocessing directive of the form:

error pp-tokensop, new-line

causes the list of pp-tokens to be sent to the listing and log file. Compilation
then stops.

I

Section 9 - The Preprocessor III- 111

9.8 Pragma directive

A preprocessing directive of the form:

pragma pp-tokens , new-line

provides a mechanism for passing information to the compiler. Prospero C
does not currently make use of the pragma tokens. They are simply discarded.

9.9 Null directive

A preprocessing directive of the form:

new-line

has no effect.

9.10 Predefined macro names

The following macro names are predefined by Prospero C.

LINE The line number of the current source line (a decimal
constant).

FILE The presumed name of the source file (a string literal).

DATE The date of translation of the source file (a string literal of
the form "Mmm dd yyyy", where the names of the
months are the same as those generated by the asctime
function, and the first character of dd is a space character if
the value is less than 10).

TIME The time of translation of the source file (a string literal of
the form "hh:mm:ss" as in the time generated by the
asctime function).

STDC The decimal constant 1 if the S (strict) option is specified,
else 0.

None of these macro names, nor the identifier defined, may be the subject
of a #define or a #undef preprocessing directive.

m-112 Section 9 - The Preprocessor

In addition, Prospero C will predefine the following macros with an empty
body if the corresponding compile-time option is invoked. These macros may
be undefined by the program.

_NINFO Defined if the N (include source line information) option is
specified.

_ I CHECK Defined if the I (check array indexes) option is specified.

_ACHECK Defined if the A (check assignments)option is specified.

_PCHECK Defined if the P (check pointers) option is specified.

_DCHAR Defined if the U (char is unsigned) option is specified.

_COMPACT Defined if the C (compact code) option is specified.

Section 9 - The Preprocessor III-U3

9.11 Preprocessor syntax summary

preprocessing-file:
group

group:

group-part

group group-part

group-part:

pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsop, else-groupop, endif-line

if-group:
if constant-ex new-line groupop,
ifdef identifier new-line group ,
ifndef identifier new-line groupop,

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-ex new-line groupop,

else-group:
else new-line group ,

endif-line:
endif new-line

control-line:

include pp-tokens new-line
define identifier replacement-list new-line
define ident Iparen ident-listop,) replace-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensop, new-line
pragma pp-tokensop, new-line
new-line

Iparen:
the left-parenthesis character without preceding white-space

Ill— 114 Section 9 - The Preprocessor

replacement-list:
pp-tokensop,

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within a #include directive)
identifier (no keyword distinction)
pp-number
character-constant

string-literal
operator

punctuator

each non-white-space character that cannot be one of the above

header-name:

<h-char-sequence>
"q-char-sequence"

h-char-sequence:
h-char

h-char-sequence h-char

h-char:

any character in the source character set
except the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any character in the source character set

except the new-line character and "

pp-number:
digit
. digit

pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

new-line:

the new-line character

Section 10 -Bibliography III-l 15

10 BIBLIOGRAPHY

"Draft Proposed American National Standard for Information Systems -
Programming Language C", 3 August 1987

"Rationale for Draft Proposed American National Standard for Information
Systems - Programming Language C", 3 August 1987

"The C Reference Manual" by Dennis M. Ritchie, a version of which was
published in "The C Programming Language" by Brian W. Kernighan and
Dennis M. Ritchie, Prentice-Hall, Inc., (1978).

"1984 /usr/group Standard" by the /usr/group Standards Committee, Santa
Clara, California, USA (November, 1984).

"American National Dictionary for Information Processing Systems",
Information Processing Systems Technical Report ANSI X3/TR-1-82 (1982).

"ISO 646-1983 Invariant Code Set".

"IEEE Standard for Binary Floating-Point Arithmetic" (ANSI/IEEE Std 754-
1985).

~~7 III-116
11 INDEX

directive 111

operator 104
operator 105
#define 99

#elif 106

#endifl06

#else 106

#error 110

#if 106
#ifdef 106

#ifndef 106

#include 108-109

#Iine 110

#pragma 111
#undef 100

DATE _ 111
_FILE__111

"_LINE_ 111
"_STDC_ _ 111
"_TIME_ _ 111

_ACHECK 112
COMPACT 113

JCHECK 112
NINFO 112

PCHECK112

_UCHAR112
abstract declarator 51

aggregate
initialization 56

aggregate type 7
alignment 39

bit-field 38

restriction 74

alignment rules 6
arithmetic

pointer 76
type 7

array

bounds 47

conversion of 14, 49
declaration 47

declarator 47

default size 47

element address comparison 79
expression 87

Section 11 -Index

extern 47

function argument 53
function returning 50
incomplete initializer 56
initialization 47

multi-dimensional 47

order of storage 64
padding 39
pointer to 76
same type 51
sizeof 47

subscript 64, 86
assignment

compound 85
expression 84
simple 84

auto 20, 53, 55, 59
initialization 55

basic type 7
bit-field 8

alignment 38
declaration 37

type 38
block 90

structure 16, 88
break statement 93

C

pre-standard 48
Prospero C 20, 22, 28, 36, 38, 43,
49,73,79, 84, 98, 100, 101, 108,
111

standard 52

call bv value 66

case label 88

char 35

character

code set 5

constant 28, 30, 107
set 4

string 31
type 6

comment 21, 32
compound

statement 55, 89
conditional

compilation 106
const 14, 34,35, 36, 46, 51

Section 11 -Index

constant 21, 23, 63
character 30

decimal 27

double 24

enum 42

evaluation 107

expression 38, 47, 86, 87, 107
floating 24, 87
folding 107
hexadecimal 25

integer 25
integral 74
null pointer 15, 55, 74, 79, 80, 83,
84

octal 25

pointer 46
unsigned 27

continue statement 91
conversion

argument type 65
arithmetic 13

by assignment 84
by return 92
character-integer 8
double-float 12

float-double 12

floating-integer 12
function name 14

implicit 63
integer-character 8
integer-floating 12
integer-long 8
integer-pointer 15
integer-unsigned 10
long-integer 10
long-unsigned 10
of array 14
pointer 36, 74
pointer-integer 74
pointer-pointer 15
quiet 74
type rules 13
unsigned-integer 10
usual arithmetic 75, 76, 79, 81. 83,
107

declarations 33

declarator 45

III-117

abstract 51

default label 88

defined 107

derived type 7
do' statement 96

double 35

empty statement 90
enum

constant 42

specifier 42
storage 42
type 42

enumerated type 6
enumeration constant 28

escape sequence 3, 29, 31, 107
expression 61

? : conditional 83

full 61

order of evaluation 61

parenthesized 63
primary 63
statement 90

extensions 22, 43
external definition 18, 59
float 7, 35, 50
for statement 97

fortran 22

Fortran-77 43

function 33, 37, 44
argument 65
auto 43

call 64, 66
declaration of 48

declarator 48

definition 53

designator 14
expression 48
function argument 53
implicit declaration of 66
name argument 53
order of parameters 43
parameter 47
parameter type 48
pointer to 53
prototype 16
same type 51
static 43

III-118

type 6
void parameter 48

goto statement 91
hexadecimal constant 25

if-else statement 94

incomplete type 6, 7, 15, 47, 80
initialization 20, 55

aggregate 56
auto 55

character array 56
constraints 55

implicit 55
in blocks 88

permitted form of initializer 87
scalar 55

static 55

struct 55

int 35

implied 34
long 34
short 34

integral type 7
keyword 22

macro names 23

label 19, 22, 89
case 89

default 89

labelled statement 88

linkage 60
external 18

internal 18

none 18

long 35
loop body 96
lvalue 14, 53, 61,71,83-87

modifiable 84

macro

argument 101
argument substitution 102
body 99
definition scope 100
function-like 99, 101
identical 100

invocation 101

name 22, 99
object-like 99, 101
parameters 99

Section 11 -Index

predefined 111, 112
preprocessor 98
rescanning and replacement 102

namespaces 19
label 19

struct members 19

tag 19
union members 19

new-line character 2
null statement 90

object
types 6

object definitions 60
octal constant 25

operand 32
operator 21, 32

<!=> inequality 80
<!> logical negation 70
<##> glue 105
<#> stringify 104
<&&> logical AND 82
<&>38
<&> bitwise AND 81

<%> modulus 75

<*> indirection 70
<*> multiplication 75
<++> increment 64, 70
<+> addition 76, 77
<+> unary plus 72
<,> comma 86
<--> decrement 64, 69, 70
<-> > member select indirect 64

<-> subtraction 76, 77
<.> member select direct 64

</> division 75

<«> left shift 78

«=> less than or equal 79
«> less than 79

<==> equality 80
<>=> greater than or equal 79
<» greater than 79
<>» right shift 78
<[]> subscript 64
<A> bitwise exclusive OR 81

<|> bitwise inclusive OR 81
<||> logical OR 82
<~> bitwise complement 72

Section 11 -Index

<-> unary minus 72
arithmetic 75

assignment 84
bitwise shift 78

bitwise shift 78

cast 74

commutative 75,76,80,81
explicit conversion 74
multiplicative 75
postfix <++>{increment} and <-
>{decrement} 69
prefix <++>{increment} and <-
>{decrement} 70
relational 79

sizeof 14, 18,70,86, 107
option

A112

C112

1112

N112

P 112

S 22,43, 79,100, 111
U 8, 28, 112

parameter

default argument promotion 49
ellipsis 49,67
passing 65
register 50
specification 53
storage duration 53
typedef 53

pascal 22, 43
phases of translation 2
pointer

arithmetic 76

comparison 79
constant 46

declaration of 46

precedence 62
preprocessing directives 98
promotion

arithmetic 13

default argument 67
integral 8

punctuator 21, 32
recursion 66

register 43, 53, 59

allocation 43

reserved words 22

return statement 92

scalar type 7
scope 16, 49

block scope 16
disjoint 52
file scope 16, 59
function scope 16
of externals 60

tag scope 16
self-referential struct 40

separate compilation 2
sequence point 69, 86
short 35

signed 35
source character set 5

statements 88

static 20, 43
tentative definition 60

storage
defined elsewhere 47

overlapping 84
static 43, 87

storage duration 20
automatic 20

static 20

storage-class
auto 44

declaration 43

extern 44

omitted specifier 44
register 44, 48
specifier 43
static 44

string
concatenation 31

literal 31

type of 63
struct

initialization 55

member name 19

structure

declaration 37

reference 67

tag 40
switch 94

III-119

Ill-120

syntax error 3
tag

enum 19

scope 16
struct 19

union 19

target character set 5
tentative definition 60

tokens 21

translation phases 2
translation unit 2
trigraph sequences 5
type 6

aggregate 7
arithmetic 7

basic 7

char 6

conversion by return 92
conversion rules 13

declaration 45

derived 7

equivalence 51
function 6

incomplete 6, 7, 15, 80
integral 7, 76, 78
names 50

scalar 7

tags 51
type specifier 34

omitted 34

typedef 22, 43
declaration 44

declaration 51

unary expression 70
underscore character 23

union

declaration 37

reference 67

member name 19

tag 40
unsigned 35
void 7, 14, 35, 74, 80

expression 14
volatile 34, 35, 36, 46, 51
while statement 96

white-space 2, 21,99, 101, 104

Section 11 -Index

n
n

n
n

Appendix A - Source language syntax A-l

A SOURCE LANGUAGE SYNTAX

Throughout this manual and the appendix, the formal syntax definitions follow
the notation described below. Non-terminal symbols (syntactic categories) are
in italic type, while terminal symbols (literal words and characters) are in
bold courier type. Note that the upper- and lower-case versions of a
letter are not equivalent. Optional symbols are suffixed by the subscript 'opt'.

The definition of a syntactic category consists of the name of the non-terminal
symbol followed by a colon on one line, followed by the definition or
definitions indented on the following lines, one line per alternative (except
where 'one of is specified). A blank line indicates the end of a definition.

For increased readability, the non-terminal symbols are often hyphenated.

In this appendix, the nature of the source file which is input to the compiler
(the 'compilation-unit') is viewed from two complementary aspects: the lexical
(or bottom-up) and syntactic (or top-down). These views merge at about the
level of the expression. The division of the remainder of this appendix into
two subsections is designed to mirror these two viewpoints.

Taken together, subsections A.2 and A.3 contain one, and only one, definition
for every non-terminal symbol.

Subsection A.4 defines the syntax of the preprocessor.

7 A-2 Appendix A- Source language syntax
A.2 Lexical aspects

A.2.1 Tokens

token:

keyword
identifier
constant

string-literal
operator

punctuator

A.2.2 Keywords

keyword: one of
auto double int struct

break else long switch
case enum register typedef
char extern return union

const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

fortran pascal (when the S option is off)
I

I

I

I

Appendix A - Source language syntax

A.2.3 Identifiers

identifier:
non-digit
identifier non-digit
identifier digit

non-digit: one of
abed

n o p q

A B C D

N 0 P Q

e

r

E

f

s

F

g
t

G

$ (unless S option is specified)

digit: one of
0 12 3 4 5 6

h

u

H

v

I

:
w

J

W

A. 2.4 Constants

constant:

floating-constant
integer-constant
enumeration-constant

character-constant

floating-constant:
fractional-constant exponentop,fioating-suffixop,
digit-sequence exponent fioating-suffixop,

fractional-constant:
digit-sequenceop, . digit-sequence
digit-sequence .

exponent:
e signopt digit-sequence
E signop, digit-sequence

sign: one of
+

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f 1 F L

k 1

x y

K L

A-3

m

z

M

A-4 Appendix A - Source language syntax

integer-constant:
decimal-constant integer-suffixop,
octal-constant integer-suffixop,
hexadecimal-constant integer-suffixop,

decimal-constant:

non-zero-digit
decimal-constant digit

octal-constant:
0

octal-constantoctal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

non-zero-digit: one of
123456789

octal-digit: one of
0 12 3 4

hexadecimal-digit:one of
0 12 3 4 5 6
a b c d e f

A B C D E F

integer-suffix:
unsigned-suffix long-suffix ,
long-suffix unsigned-suffix ,

unsigned-suffix: one of
u U

long-suffix: one of
1 L

enumeration-constant:

identifier

character-constant:

' c-char-sequence'

I

Appendix A - Source language syntax A-5

c-char-sequence:
c-char

c-char-sequence c-char

c-char:

any character in the source character set except
the single-quote ', backslash \, or new-line

escape-sequence

escape-sequence:

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
V \" \? \\ \a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hex-digit
hexadecimal-escape-sequence hex-digit

A.2.5 String literals

string-literal:
"s-char-sequenceop, "

s-char-sequence:
s-char

s-char-sequence s-char

s-char:

any character in the source character set except
the double-quote ".backslash \, or new-line

escape-sequence

7 A-6 Appendix A- Source language syntax
A.2.6 Operators

operator: one of
[] ()

++ — £

/ % «
| &&

? :

*

»

II

->

+

< > <=

! sizeof

= '*= /=
, # ##

%= += -= «= »= &=
A_

1=

A.2.7 Punctuators

punctuator: one of
[] () { } * , I = } ... #

7 Appendix A- Source language syntax A-7
A.3 Syntactic aspects

A.3.1 Expressions

primary-ex:

identifier
constant

string-literal
(expression)

postfix-ex:
primary-ex
postfix-ex [expression]
postfix-ex (argument-expression-listop,)
postfix-ex . identifier
postfix-ex -> identifier
postfix-ex ++
postfix-ex --

argument-expression-list:
assignment-ex
argument-expression-list , assignment-ex

unary-ex:

postfix-ex
++ unary-ex
— unary-ex

unary-operator cast-ex
sizeof unary-ex
sizeof (type-name)

unary-operator: one of
£ * + - !

cast-ex:

unary-ex

(type-name) cast-ex

multiplicative-ex :
cast-ex

multiplicative-ex * cast-ex
multiplicative-ex / cast-ex
multiplicative-ex %cast-ex

additive-ex:

multiplicative -ex
additive-ex + multiplicative-ex
additive-ex - multiplicative-ex

A-8 Appendix A - Source language syntax

shift-ex:
additive-ex

shift-ex « additive-ex
shift-ex » additive-ex

relational-ex:

shift-ex
relational-ex < shift-ex
relational-ex > shift-ex
relational-ex <= shift-ex
relational-ex >= shift-ex

equality-ex:
relational-ex

equality-ex == relational-ex
equality-ex != relational-ex

AND-ex:

equality-ex
AND-ex £ equality-ex

exclusive-OR-ex:
AND-ex

exclusive-OR-ex A AND-ex

inclusive-OR-ex:

exclusive-OR-ex

inclusive-OR-ex \ exclusive-OR-ex

logical-AND-ex:
inclusive-OR-ex
logical-AND-ex ££ inclusive-OR-ex

logical-OR-ex:
logical-AND-ex
logical-OR-ex \ \ logical-AND-ex

conditional-ex:

logical-OR-ex
logical-OR-ex ? ex : conditional-ex

assignment-ex:
conditional-ex

unary-ex assignment-operator assignment-ex

assignment-operator: one of
= *= /= %= += -= «= »= &= *= | =

Appendix A - Source language syntax A-9

expression:
assignment-ex
expression , assignment-ex

constant-expression:
conditional-expression

A.3.2 Declarations

declaration:

declaration-specifiers init-declarator-list ,;

declaration-specifiers:
storage-class-specifier declaration-specifiersop,
type-specifier declaration-specifiersop,

init-declarator-list:

init-declarator

init-declarator-list , init-declarator

init-declarator:

declarator

declarator = initializer

type-specifier:
void

char

short

int

long
float

double

signed
unsigned
const

volatile

struct-or-union-specifier
enum-specifier
typedef-name

A-10 Appendix A - Source language syntax

struct-or-union-specifier:
struct-or-union identifierop, { struct-declaration-list }
struct-or-union identifier

struct-or-union:

struct ,

union

struct-declaration-list:

struct-declaration
struct-declaration-list struct-declaration

struct-declaration:

type-specifier-list struct-declarator-list ;

type-specifier-list:
type-specifier .
type-specifier-list type-specifier

struct-declarator-list:

struct-declarator

struct-declarator-list, struct-declarator

struct-declarator:

declarator

declarator , : constant-expression

enum-specifier: .
enum identifierop, { enumeration-list }
enum identifier

enumeration-list:

enumeration

enumeration-list , enumeration

enumeration:

enumeration-constant

enumeration-constant = constant-expression

I

storage-class-specifier:
typedef
extern

static

auto '
register
pascal I
fortran

declarator:

pointerop, direct-declarator

Appendix A - Source language syntax A-ll

direct-declarator:

identifier
(declarator)

direct-declarator [constant-expression ,]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listop,)

pointer:
* type-specifier-listop,
* type-specifier-listopt pointer

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratorop,

identifier-list:
identifier
identifier-list , identifier

type-name:
type-specifier-list abstract-declaratorop,

abstract-declarator:

pointer
pointerop, direct-abstract-declarator

direct-abstract-declarator:

(abstract-declarator)
direct-abstract-declaratorop, [constant-expression^,]
direct-abstract-declaratorop, (parameter-type-listop,)

typedef-name:
identifier

initializer

assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list

initializer

initializer-list , initializer

A-12 Appendix A - Source language syntax

A.3.3 Statements

statement:

labelled-statement

compound-statement
expression-statement
jump-statement
selection-statement

iteration-statement

labelled-statement:

identifier : statement
case constant-ex : statement

default : statement

compound-statement:
{ declaration-listop, statement-listop, }

declaration-list:

declaration

declaration-list declaration

statement-list:

statement

statement-list statement

expression-statement:
expressionop, ;

jump-statement:
goto identifier ;
continue ;

break ;

return expressionop, ;

selection-statement:

if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:

while (expression) statement
do statement while (expression) ;
for (exprop, ; exprop, ; exprop,) statement

Appendix A - Source language syntax A-13

A.3.4 External definitions

translation-unit:

external-declaration

translation-unit external-declaration

external-declaration:

function-definition
declaration

function-definition
declaration-specifiersop, declarator declaration-listop, compound-

statement^.

A.4 Preprocessing directives

preprocessing-file:
group

group:

group-part
group group-part

group-part:
pp-tokensop, new-line
if-section
control-line

if-section:
tf-group elif-groupsop, else-groupop, endif-line

if-group:
if constant-ex new-line group ,
ifdef identifier new-line groupop,
ifndef identifier new-line groupop,

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-ex new-line groupop,

else-group:
else new-line groupop,

A-14 Appendix A - Source language syntax

endif-line:
endif new-line

control-line:

include pp-tokens new-line
define identifier replacement-list new-line
define ident Iparen ident-listop,) replace-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensop, new-line
pragma pp-tokensopl new-line
new-line

Iparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopl

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within a #include directive)
identifier (no keyword distinction)
pp-number
character-constant

string-literal
operator
punctuator
each non-white-spacecharacter that cannot be one of the above

header-name:

<h-char-sequence>
"q-char-sequence "

h-char-sequence:
h-char

h-char-sequence h-char

h-char:

any character in the source character set
except the new-line character and >

I

1

7 Appendix A- Source language syntax A-15
q-char-sequence:

q-char
q-char-sequence q-char

q-char:
any character in the source character set

except the new-line character and "

pp-number:
digit
• digit

pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

new-line:

the new-line character

Appendix B - Compile-time errors B-l

B COMPILE-TIME ERRORS

For each error or warning number, the text which is displayed by the compiler
(provided C.ERR is present) is given.

Number Meaning

001 digit expected

002 number not followed by operator, punctuator or
white space

003 illegal octal number

004 illegal hex constant or escape sequence

014 'float' constant overflow, assumed 'double'

015 'float' constant underflow, assumed 'double'

024 'double' constant overflow

025 'double' constant underflow

030 overflow in hex character constant, top bits
ignored

031 overflow in octal character constant, top bits

ignored

034 \x... escape sequence has no hex digits

035 illegal escape code

044 character constant contains too many characters

045 illegal character constant

049 character constant exceeds source line

059 string literal exceeds source line

060 comments do not nest

061 end of included file encountered inside comment

068 end of file encountered inside comment

069 premature end-of-file encountered

100 (implicit) cast to narrower type may lose
information

101 constant truncated due to (implicit) cast

102 -ve constant cast to 'unsigned' type

B-2 Appendix B - Compile-time errors

103 non-NULL constant cast to pointer

104 implicit address of 'register' array

116 overflow casting floating point constant to
'signed char'

117 overflow casting floating point constant to
'signed long'

118 overflow casting floating point constant to
'signed short'

126 overflow casting floating point constant to
'unsigned char'

127 overflow casting floating point constant to
'unsigned long1

128 overflow casting floating point constant to
'unsigned short'

136 overflow casting 'double' to 'float'

204 attempt to assign to 'struct'/'union' with
'const' field

205 attempt to modify 'const' expression

206 attempt to use value of 'void' expression

211 identifier assumes previous (out of scope)
extern declaration

212 parameter with function type converted to ptr-
to-fn

213 parameter with array type converted to pointer
type

214 incompatible pointer types

215 incompatible types in expression

220 default declaration of identifier as 'extern

int () '

224 too few arguments in function call

225 too many arguments in function call

226 argument not compatible with parameter type

227 object in function call not function or ptr-to-
fn

Appendix B - Compile-time errors B-3
234 identifier not declared - assumed 'extern int'

235 no such field in 'struct'/'union'

236 left operand of selection must be a
'struct'/'union'

244 operand of ++/-- may not be pointer to
'void'/function

246 operand of ++/— not a scalar

247 operand of ++/— is not an lvalue

254 address of 'register' variable illegal

255 dereferencing NULL pointer constant

256 operand of & is not an lvalue

257 address of bit field illegal

258 indirection requires pointer type

259 dereferencing pointer to 'void'

260 - 'unsigned long' could overflow

266 operand of + not a scalar

267 operand of ! not a scalar

268 operand of - not arithmetic

269 operand of ~ not integral

270 operand of 'sizeof' has side effects

276 'sizeof' bit field illegal

277 'sizeof' function illegal

278 'sizeof' incomplete type illegal

279 'sizeof void' illegal

286 cast of non-scalar illegal

287 cast to non-scalar illegal

288 cast of 'void' illegal

296 operands of * / not arithmetic

297 operands of % not integral

298 operands of + not both arithmetic or
pointer/integer

B-4 Appendix B - Compile-time errors

298 operands of + not both arithmetic or
pointer/integer

299 operands of - not both arithmetic,
pointer/integer or pointer/pointer

300 right operand of << >> is negative, shift
ignored

301 right operand of << >> exceeds width of left
operand

306 operands of << >> not integral

307 constant out of range

314 incompatible types in comparison

316 operands of comparison not scalar

326 operands of & | " not integral

336 operands of && || not scalar

344 arms of ? : expression are not same type

346 control expression not scalar

350 assignment may lose information

354 'static' function not defined in translation
unit

355 incompatible types in assignment

356 lhs of assignment is not an lvalue

364 incompatible types in compound assignment

370 left operand of comma has no side effects

371 control branch displacement exceeds 32K

This normally implies that the body of a compound statement
which requires a branch around it (e.g. the subject of a selection
or iteration statement) is too large.

400 Compiler internal error

403 Compiler stack size insufficient

404 Compiler workfile contents invalid

405 Compiler workspace insufficient

406 Disk/DOS error during compilation

Appendix B - Compile-time errors B-5

410 constant truncated due to overflow

416 constant division by zero

417 constant remainder implies division by zero

418 integer constant expression expected

504 declaration appears after statement

505 empty declarator

506 local object too large

507 global object too large

508 local data size exceeds implementation limit

509 object may not have type 'void'

510 'register' has no effect on 'struct'/'union'

514 type specifiers may not be omitted in 'typedef'
declaration

515 type specifiers missing - assumed 'int'

516 illegal combination of type/storage class
specifiers

524 'enum' used before defined

525 redeclaration has different linkage

526 declaration has different type to previous (out
of scope) declaration

527 redeclaration has different type

528 declaration has different type to previous
extern declaration

529 duplicate defining occurrence

534 'struct'/'union' used before defined

535 bit field base type not 'int ', assumed 'int'

536 'struct'/'union' has zero size

537 field may not be 'void', function or incomplete
array type

539 storage class specifier illegal on field

539 duplicate field name in 'struct'/'union'

7 B-6 Appendix B- Compile-time errors

544 bit field width illegal, assumed 'int' width

545 named bit field may not have zero width

546 enumeration constant too large

548 function header missing (semicolon after
function header?)

549 parameter declarations illegal except after
identifier list

554 storage class specifier illegal on parameter
variable

555 identifier list illegal except in function
header

556 illegal function return type

557 identifier miuuing in paramuLoi due: Iarat. ion

558 parameter may not be 'void'

559 variable in parameter declaration was not in
parameter list

564 'void' parameter list has extra parameters

565 pointer initializer is non-NULL integer

566 only 'const' or 'volatile' are legal in this
context

569 scalar initializer not compatible type

574 ptr-to-fn initializer is non-NULL integer

575 array of functions illegal, assumed array of
ptr-to-fn

576 array too large

577 illegal array size

578 only first dimension of array may be omitted

579 ptr-to-fn initializer not compatible type

580 'signed char' initializer truncated

581 'signed long' initializer truncated

582 'signed short' initializer truncated

584 too many initializers

Appendix B - Compile-time errors B-7

585

586

587

588

589

590

591

592

594

595

596

597

598

599

600

601

602

606

608

609

610

620

626

630

631

634

635

636

initializer is not constant

constant pointer expression expected

constant ptr-to-fn expression expected

floating point constant expected

function cannot be initialized

'unsigned char' initializer truncated

'unsigned long' initializer truncated

'unsigned short' initializer truncated

'signed' bit field initializer truncated

'unsigned' bit field initializer truncated

illegal initialization

initializer is not aggregate

initializer is not scalar

pointer initializer not compatible type

label defined but not used in function

label is target of goto from outside
initialized block

target of 'goto' is in nested initialized block

duplicate label declaration

label used but not defined in function

local 'extern' may not be initialized

expression statement has no side effect

control expression is an assignment

control expression is not a scalar

no cases in 'switch'

'switch' has constant control expression

duplicate 'case' label on same statement

'default' occurs more than once on same
statement

duplicate 'case' label

B-8 Appendix B - Compile-time errors

637 'default' occurs more than once

638 'switch' control expression not integral

640 unreachable code

644 'return exp;' not found in function returning
non-'void'

645 'return;' found in function returning non-

'void'

646 'return exp;' found in function returning
'void'

654 function contains both 'return;' and 'return

exp; '

655 'return' expression is not compatible with
function result type

666 'continue' outside loop

667 'break' outside loop/'switch'

668 'case'/'default' outside 'switch'

704 'auto' illegal on global object

705 'register' illegal on global object

805 duplicate macro parameter

806 parameter list expected after function macro
name

807 identifier expected in macro argument list

808 macro arguments not separated by commas

809 identifier missing in macro argument list

810 probable recursive include, include ignored.
A file hasbeen included more than 4 times simultaneously

811 missing > after 'Sinclude <filename'

816 'finclude' not followed by a filename

817 '#include' filename exceeds source line

818 could not find include file

819 could not open include file

820 unknown directive encountered while skipping

Appendix B - Compile-time errors B-9

821 'Kelse'/'#elif' found in '#else' arm

824 '#else'/'#elif' not matched by '#if...'

825 'flendif not matched by 'ftif...'

826 : not matched by ? in 'fif expression

827 ? not matched by : in '#if' expression

828 floating point illegal in '#if' expression

829 'defined' not followed by an identifier

834 attempt to redefine function macro as object
macro

835 attempt to redefine macro with different-
argument s

836 attempt to redefine preprocessor keyword
'defined'

844 attempt to redefine macro with different body

845 attempt to redefine object macro as function
macro

846 '#define' not followed by an identifier

847 'fundef' not followed by an identifier

848 attempt to 'fundef' a predefined macro
The predefined macros beginning may not be undefined

849 #directive must be first token on line

850 null macro argument

851 too many arguments in macro call

854 attempt to redefine a predefined macro name
The predefined macros beginning may not be redefined

856 missing argument (s) in macro call

866 '#line digit-sequence' not followed by
"filename"

867 '#line' not followed by digit-sequence

876 illegal '#if' expression

877 illegal literal in '#if expression

878 'sizeof' illegal in '#if expression

7 B-10 Appendix B - Compile-time errors

879 illegal operator in 'tif' expression

886 missing expression in '#if' expression

887 missing identifier in 'defined(identifier)'

888 missing) in 'defined(identifier) '

896 missing operand in 'fif' expression

897 missing operator in '#if' expression

898 unmatched) or missing ? in 'tif' expression

899 unknown directive

900 .. illegal, . assumed

901 source skipped to this point after error in top
level declaration

902 source skipped to this point after error in
parameter declaration

903 source skipped to this point after error in
field declaration

906 Prospero extension to C

When S option specified

907 syntax error: unexpected token
The offending token is printed

908 illegal token
The offending token is printed

910 mismatched }

911 error recovery inserted token
The inserted token is printed

912 discarding token
The discarded token is printed

913 source skipped to this point after error in
'case ' label

917 unrecoverable syntax error

918 parser stack overflow

Expression too complicated

919 Compiler internal error

Should never occur - please contact Prospero

I

I

I

~ Appendix B - Compile-time errors

920 source skipped to this point after error in
expression

926 syntax error: expected

927 syntax error: unexpected right parenthesis

928 syntax error: missing comma

980-999 Compiler internal error

Should never occur - please contact Prospero

7 Appendix C- Run-time error codes C-l
C RUN-TIME ERRORS

The format of the messages produced for run-time errors is given in Part I
under "Operation of object programs". This appendix lists the error codes,
with significance and possible causes. Some errors can only occur if the
relevantcheckingoption was selectedat compiletime- see Part I, section4.2.

Code Meaning

B Bounds exceeded.

An indexbound has been exceeded (withoption I selected) or a value
is outside the range of the receiving field in an assignment (with
option A selected).

C Switch error.

No case label corresponding to expression value (and no default label
specified). Continuation is to the statement following the switch
statement.

J Divide by zero (integers).

Continuation possible,but results not predictable.

K Overflow on floating to integer conversion.

Conversion of a floating point value to integer gives a value outside
integer range.

0 Overflow during signed integer arithmetic.

From 32-bit add or subtract (when option A or I invoked) or from
32-bit multiply (always checked). Continuation possible, truncated
result used.

P Pointer not valid.

A pointer contains an invalid value. Attempting to "free" a memory
block not allocated by malloc, or dereference a NULL pointer (with
option P selected).

S Stack space insufficient.

The dynamic stack used for parameters and local variables of
functionshas exceeded the space available. (Onlychecked if option N
specified.)

7 C-2 Appendix C- Run-time error codes
X Overflow during floating point arithmetic.

Exponent out of range. Continuation possible but results not
predictable.

Y Missing function.

When linking, "Unsatisfied external" was reported (see Part I,
section 5.3.1). At run-time, such an external has been referenced, by
calling a non-existent function.

Z Divide by zero (floating-point).

Continuation possible, but results not predictable.

HwC
/5

^
O

S
<

/)
w

L
.

H
C

D
u

0
1

<
ffl

O
S

-
C

<
c

B
o

u
rn<

B
i

u

QX"
ncC
l>

1
)

a
.

<
Q

r

g&IS3

uIofa

IuC
O

S3

0sX

OS
,o

o
T3

<D
tM

M
J3

._
—

,,M
—

.E
fiO

O
.a

-i-i«
*

J
p

>
S

x
;>

1
N

U
J

)
Q

o
-—

r
^

c
o

T
t^

\o
r
^

c
»

o
s
<

B
a
U

Q
U

f
c
o

^
r
^

r
n

r
r
in

v
o

r
~

-
o

o
o

\<
C

Q
U

Q
W

tL
l

g
^

c
^

rn
T

r>
n

v
o

r^
o

o
o

\<
;c

Q
U

Q
U

J
U

H
O

^
r^

rn
T

t^
^

o
r^

c
»

o
s
<

Q
a
U

Q
W

tL
,

'T
"T

a
t

^
T

r
^

r
t
T

f
T

t
T

f
^

T
t
i
f
T

f
^

f
^

i
n

i
o

v
i
v

i
i
n

i
/
i
i
/
i
i
n

i
/
i
v

i
i
n

i
o

v
i
i
n

i
n

i
n

<
y

.
w

^
>

#
+

©
<

—
(
S

w
T

t
i
n

w
h

o
o

a
.
.

.
.

v
n

a
o

-

O
^

c
^

ro
rfio

v
o

«
~

(X
3

^
<

;0
3

U
Q

U
fc

O
'rt(S

rn
T

i-w
-)\O

t^
o

o
o

s
<

C
Q

U
Q

W
tL

,

X
f
a
O

^
J

^
Z

«
5

q
h

n
o

z
o

w
cq

h
fc

h
b,c*

n
_.j

y
y

y
y

s
£

h
5

s
s

%
^

<*>c«
to

o
«
c
^
<
^
^
<
o
v
o
t
^
o
o
o
\
<
C
Q
y
Q
W
t
i
«
©
~
c
4
r
o
'
«
*
<
o
v
o
r
-
-
o
o
o
s
'
<
0
a
U
Q
W
[
i
«

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
r
-
.

—
^
-
—
.
«
J
S
U
S
«
«
!
5
J
;
S
™
2

_
_

Appendix E - Mixed language programming E-l

E MIXED LANGUAGE PROGRAMMING

Program construction

Mixed language programs may be constructed by amalgamating Prospero
Fortran, Pascal andC components. Oneof the languages mustsupply themain
program (or main function in the case of C), but can call other functions or
procedures coded in any of the three languages.

Input/output may be performed in each language independently. There is,
however, one exception to this: because standard input and output are
initialized differently for the three languages, their use is restricted to the
language of the main program. In the case of a Pascal or Fortran main
program, this means that stdin and stdout should notbe referred to inany
C functions called (explicitly or by calling functions such as printf whose
output is implicitly to stdout). In the case ofa C main program, it means that
the standard files input and output cannot be used in Pascal segments,
unless they have been explicitly assigned to a file or device and reset/rewrite
issued, and the standard unit * cannot beused inFortran subprograms.

When a mixed language program terminates, either normally, or through a
run-time error, all open files of the main language are closed. Pascal and
Fortran will also cause each other's open files to be closed. However, C files
will not be closed on termination of a Fortran or Pascal main program, and
Pascal or Fortran files will not be closed on termination of a C main program.

After compilation by the appropriate compiler, the components are link-edited
together (refer to Part I). In the linker command file, the .BIN files are listed
in sequence (with the main program module typically coming first, after
FIRST.BIN), followed by the names of the two libraries to be selectively
scanned (/S option), with the library for the main program language coming
first, followed by LAST.BIN. The file FIRST.BIN is the same for Pascal and
Fortran, but not for C. If mixing C with Pascal or Fortran, the FIRST.BIN
from Pascal or Fortran should be used. The file LAST.BIN is the same for all
three languages.

~7 E-2 Appendix E - Mixed language programming

Correspondence of data types

The table below shows the correspondence between Fortran, Pascal and C data
types.

C Fortran Pascal

unsigned long int no equivalent no equivalent

long int INTEGER integer

int INTEGER*2 integer2

unsigned int no equivalent word

signed char INTEGER* 1 integerl

unsigned char no equivalent byte

float REAL real

double DOUBLE PRECISION longreal

struct { COMPLEX RECORD

real re, im; re, im: real;

} END;

Pascal and Fortran COMMON variables cannot be accessed from within C, nor
can C external objects (other than functions) be accessed from Pascal, except
by passing their addresses as parameters.

Parameters

The name of a Pascal procedure at the outer level or a Fortran subroutine can
be declared as pascal (or f ortran) extern void functions within C
and then referenced. Pascal and Fortran functions are similarly declared as
functions returning non-void. The pascal or fortran type modifier
indicates that the parameters are passed in the opposite order to that usually
employed by C, that they are removed from the stack by the called (rather than
the calling) function, and that function results are returned in accordance with
the convention of the stated language. A C coded function declared with the
pascal or fortran type modifier will also conform to these conventions,
and can therefore be called from Pascal or Fortran.

A C function prototype with one of the type modifiers described above must be
supplied for each non-C coded function, and the parameters must match in
number, order, and type (see above) with those of the Pascal or Fortran code.
All parameters passed to a Fortran coded function are passed by reference - a
pointer to the relevant type should be employed.

I

Appendix E - Mixed language programming E-3

Note that in the case of a CHARACTER argument, Prospero Fortran does not
pass the address of the start of the data (as would be done in C for a char
array), but the address of a 6-byte Character VariableDescriptor (CVD). This
is structured likea C structure consisting of a 4-byte address field followed by
a 2-byte length field.

A C function which has a function pointer argument can be called from Pascal
or Fortran. Calling from Fortran presents no problem, but because Pascal
passes two addresses in such cases (the entry address and the static link), the C
prototype must include an extra dummy argument to match the latter. For
example

Pascal FUNCTION area (PROCEDURE calc): real; EXTERNAL;

C float area (long dummy, void (*calc) (void))

The Pascal procedure passed as an actual argument corresponding to calc
must be declared at the outer level.

Interchange of files

A Prospero Fortran file of variable-length formatted records and a Prospero
Pascal file of type text are equivalent to a text mode file in Prospero C. (All, in
fact, are normal GEMDOS text files.)

A Prospero Fortran file of fixed-length records, or a non-text file in Prospero
Pascal, should be read or written in binary mode in C. The simplest way is to
declare a structure whose layout corresponds to that of the Pascal file element
type or the Fortran iolist and record length, then use f read or fwrite to
transfer elements to or from an array of such structures in C. Thus for
example a file written by a Pascal program as

FILE OF RECORD

item: integer;
vmax,vmin: real;

END;

would be read in C by

typedef struct { long item;
float vmax, vmin;

item;

item buffer[N]

s = fopen (filename, "rb");
fread (buffer, sizeof (item), N, s)

Appendix F - Definitions of terms F-l

F DEFINITION OF TERMS

Alignment A requirement that objects of a particular type be located
on storage boundaries with addresses that are particular
multiples of a byte or word address.

Argument An expression in the comma-separated list bounded by the
parentheses in a function call expression, or a sequence of
preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation.
Also known as "actual argument" or "actual parameter".

Byte The unit of data storage in the execution environment large
enough to hold a single character in the character set of the
execution environment. A byte is composed of a contiguous
sequence of 8 bits. The least significant bit is called the low-
order bit; the most significant bit is called the high-order
bit. Except for bit-fields, objects are composed of
contiguous sequences of one or more bytes.

Bit The unit of data storage in the execution environmentlarge
enough to hold an object that may have one of two values.

Function A body of executable code.

Parameter An object declared as part of a function declaration or
definition that acquires a value on entry to the function, or
an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a
function-like macro definition. Also known as "formal
argument" or "formal parameter".

Implementation limits
Restrictions imposed upon programs by Prospero C .

Null character A character with all bits set to 0.

Object A region of data storage in the execution environment, the
contents of which can represent values.

Sequence point A point in the source where all side effects of previous
evaluations is complete and no side effects of subsequent
evaluations has yet taken place.

Side effect The name given to the effect whereby a value is assigned to
an object during the evaluation of an expression.

Jr F-2 Appendix F - Definitions of terms

Undefined behavior
Behavior, upon use of a nonportable or erroneous program
construct, of erroneous data, or of indeterminately-valued
objects, for which the C Standard imposes no requirements.

Unspecified behavior
Behavior, for a correct program construct and correct
data, for which the C Standard imposes no requirements.

Appendix G - Numerical limits G-l

G IMPLEMENTATION LIMITS

This appendix contains the definitions of integral and floating point limits, as
defined in the header files <limits.h> and <float.h>.

G.l Integral limits <limits.h>

#define CHAR BIT 8

#define SCHAR MIN (-128)

#define SCHAR_MAX 127

#define UCHAR_MAX 255u

#ifndef _UCHAR

#define CHAR MIN SCHAR MIN

#define CHAR_MAX SCHAR MAX

#else

#define CHAR MIN 0

#define CHAR_MAX UCHAR_MAX
#endif

#define SHRT MIN (-32768)

#define SHRT MAX 32767

#define USHRT_MAX 65535u

#define INT MIN (-32768)

#define INT_MAX 32767

#define UINT_MAX 65535u

#define LONG MIN (-214748364

#define LONG_MAX 2147483647

#define ULONG MAX 4294967295U

/* No of bits in a char */

/* Minimum signed char */
/* Maximum signed char */
/* Maximum unsigned char */

/* char is signed */
/* Minimum plain char */
/* Maximum plain char */

/* char is unsigned */
/* Minimum plain char */
/* Maximum plain char */

/* Minimum short */

/* Maximum short */

/* Maximum unsigned short */
/* Minimum int */

/* Maximum int */

/* Maximum unsigned int */
/* Minimum long */
/* Maximum long */
/* Maximum unsigned long */

G.2 Floating-point limits <float.h>

Macros whose names start with FLT_ refer to the limits of type float,
while those beginning DBL_ and LDBL_ refer to the limits of types double
and long double respectively. In Prospero C, double and long
double share the same representation, and therefore the same limits.

/* Radix of exponent */
#define FLT_RADIX 2

/* Rounding mode (to nearest) */
#define FLT_ROUNDS 1

/* number of binary digits in mantissa */
#define FLT_MANT_DIG 24
#define DBL_MANT_DIG 53
#define LDBL MANT DIG 53

G-2 Appendix G - Numerical limits

/* Minimum x such that 1.0+x > 1.0 */
#define FLT_EPSILON 1.19209290E-07F
#define DBL_EPSILON 2.2204460492503131E-16
#define LDBL_EPSILON 2.2204460492503131E-16

/* number of decimal digits in mantissa */
#define FLT_DIG 6
#define DBL_DIG 15
♦define LDBL_DIG 15

/* minimum* such that 2X-' is normalized */
#define FLT_MIN_EXP -125
#define DBL_MIN_EXP -1021
#define LDBL_MIN_EXP -1021

/* minimum normalized postive number */
#define FLT_MIN 1.17549435E-38F
♦define DBL_MIN 2.225073858507201E-308
♦define LDBL_MIN 2.225073858507201E-308

/* minimum x such that lO is normalized */
♦define FLT_MIN_10_EXP -37
♦define DBL_MIN_10_EXP -307
♦define LDBL_MIN_10_EXP -307

/* maximum x such that 2*-' is representable */
♦define FLT_MAX_EXP 128
♦define DBL_MAX_EXP 1024
♦define LDBL_MAX_EXP 1024

/* maximum representable floating point number */
♦define FLT_MAX 3.40282347E+38F
♦define DBL_MAX 1.797693134862316E+308
♦define LDBL_MAX 1.797693134862316E+308

/* maximum x such that 10* is representable */
♦define FLT_MAX_10_EXP +38
♦define DBL_MAX_10_EXP +308
♦define LDBL MAX 10 EXP +308

I

I

Appendix H - Implementation specific behavior H-l

H IMPLEMENTATION SPECIFIC BEHAVIOR

This appendix brings together a number of details of the behavior of Prospero
C in areas where different implementations of standard C may differ, while
still conforming to the ANSI Standard. Anyone wanting to write programs
which will work on a number of C implementations and environments should
not make assumptions about the behavior in any of the instances defined below.

H.l Implementation defined behavior

This covers areas where the standard recognizes that different
implementations will behave in different ways, for example to reflect the most
efficient operations on a particular microprocessor or operating system, but
states that each implementation must document the way in which they perform.

Environment

Arguments to main:

The command tail given when a program is invoked from the GEM
Desktop, the Workbench, or any other program, is parsed to divide it into
a number of strings delimited by whitespace, and pointers to these strings
(the program arguments) are placed in the argv array passed to the main
function. Whitespace can be included in a program argument by enclosing
it in double quotes. To include a double quote in a program argument, it
should be preceded by a backslash character. Any backslash character not
followed by a double quote is included in the argument unchanged.

The value of argv [0] is a pointer to an empty string, as the program
name is not made available under GEMDOS. The program arguments
may be in mixed case. The parameters argv and argc, and the program
arguments pointed to by argv may all be modified by the program.

Interactive devices:

There is no way to determine under GEMDOS whether a handle refers to
an interactive device or to a file. All files opened by the program are
therefore assumed to refer to disk files, and are fully buffered unless
otherwise specified by setvbuf. Standard output is always line buffered.
Standard input is line buffered if its size returned by GEMDOS is zero. In
this case, a newline is echoed to the console after every line of input. If the
file size is not zero, standard input is assumed to have been redirected, and
is fully buffered.

f H-2 Appendix H- Implementation specific behavior
Identifiers

All characters of an internal identifier are significant, no length
restriction.

The linkerwill ignore all characters after the 32nd in external identifiers,
and does not treat case as significant.

Characters

There are no extra characters in the source set.

The ASCII character set is assumed for the execution character set.

Two chars in a short or int, four in a long. Order is most significant
byte first.

There are eight bits in char, in the order 76543210.

The source character set is assumed to be ASCII (i.e., a subset of the
execution character set).

Character constants containing characters not in the execution character
set are passed as-is.

The value of a multi-character constant is the int constructed from the
sequence of bytes in the character constant. Character constants are
defined to have the most significant byte first; the rightmost character in
the constant being the least significant byte of the integral value.
e.g.,'\1\0' will have the value 2 5 6.

The type char is compile-time configurable as signed or
unsigned.

Integers

Integers are two's complement, and plain int isl6 bits long.

Bitwise operations on signed integers are supported.

The sign of the remainder on integer division is the same as that of the
quotient, and the value such that ((a/b) * b) + (a%b) == a.

Right shift of signed is arithmetic (sign extends).

I

I

f Appendix H - Implementation specific behavior H-3
Floating point

Floating point values are represented in the IEEE standard format - see
Part II.

Converting floating-point to integer will truncate towards zero.

Converting a floating-point value to a narrower floating type will round
to nearest.

Arrays and pointers

There is no limit (other than machine memory) on the size of an array.

The type of size_t is unsigned long int.

When casting a pointer to an integer, the receiving integer should be
long , or the value will be truncated. Casting an integer to a pointer will
behave as if the integer were first converted to unsigned long .

A pointer to function is identical in size, structure, and properties to a
"normal" pointer.

ptrdiff_t is equivalent to type signed long.

Registers

Register allocation is performed by the code generator. Explicit uses of
register therefore have no effect.

Structures, unions, and bit-fields

If a member of a union is accessed using a member of a different type, the
result is undefined.

Each element of a struct will be aligned on a word boundary if its size is
greater than 1 byte, with padding if necessary, otherwise on a byte
boundary. A padding byte will be placed at the end of the structure if the
size of the structure is greater than one byte.

A plain int bit-field is treated as signed.

Bit-fields never cross an int boundary

7 H-4 Appendix H - Implementation specific behavior
The first bit field encountered is least significant, e.g.,

int aa : 2;

int bbb : 3;

int : 7;

int c : 1;

int ddd : 3;

will pack as dddcxxxxxxxbbbaa in a 16-bit int. Consecutive bit
fields that would all pack into one byte will only be allocated one byte
(unless word alignment is enforced).

Bit-fields can straddle a storage-unit boundary (char).

Declarators

The maximum number of modifying declarators exceeds that in the C
Standard (12) by a large margin.

Statements

There is no limit on the number of case values.

Preprocessing directives

Character constants will have their values calculated in the same manner
as outside the preprocessor. See Part III, section 4.3.4 for more details.

Header file names in angle brackets will be searched for in the current
directory, the directory specified by the Workbench path for include
files, and all paths specified by the PATH environment variable.

Header file names in quotes should specify the path to be searched as part
of the header file name. This will be interpreted relative to the current
directory.

No fpragma directives are supported.

!

I

I

7 Appendix H- Implementation specific behavior H-5
H.2 Unspecified behavior

The following represent behavior for correct programs and data that is not
specified by the C Standard. Although it is not wise to rely on any particular
behavior in any of these cases, especially when trying to write portable
programs, the behavior of Prospero C is as described below.

Order of static initialization.

Block data information is written to the object code file. Initialization
therefore conceptually takes place simultaneously, before program start
up.

Order of expression evaluation.

Depth first tree walk.

Evaluationof function designatorand arguments.

Because of theorder of arguments on the stack(seebelow), arguments are
evaluatedright to left, followed by the function designator.

For external functions declared with the pascal or fortran
keyword, the arguments will be evaluated left to right.

Storage layout for formal parameters

I

First argument at lowest address, last argument at highest address - this
affects the order of evaluation (see above).

f H-6 Appendix H - Implementation specific behavior
H.3 Undefined behavior

The following represent some aspects of behavior for incorrect programs or
data where the C Standard imposes no requirements on the behavior. It is
unwise to make assumptions about how a compiler willbehave in the following
circumstances, especially when trying to write portable programs. Prospero C
behaves as described below.

Character encountered outside required character set.

The character becomes a separate preprocessing token. If, after
preprocessing is complete, that token is still present, an 'Illegal token'
error will be given.

An attempt is made to modify a string literal.

This will generally work, but is not recommended, since the
implementation of string literals allows for future enhancements that
would place them in protected, or read-only, memory areas. Note that
identical string literals are not commoned up. Note also that extending a
string literal will almost certainly overwrite code (rather than
overwriting data).

Number of significant characters in identifiers.

All characters in an identifier are significant. External identifiers that
differ only after 32 characters will cause an error at link time.

Unspecified escape sequences.

These are left unmodified, with a warning given.

Calling functions with too few arguments.

This will work, unless the missing arguments are accessed within the
called function. Reading missing arguments will give undefined values;
writing to them will overwrite the caller's local variables.

Calling function with too many arguments.

This will always work.

Type mismatch on parameters.

This will give undefined values when the parameters are referenced (and
may overwrite the caller's local data).

I

Appendix H - Implementation specific behavior H-7

Invalid memory references.

Accesses to certain memory areas are trapped by hardware. Others will
return an undefined value.

Pointer to function cast to different function type.

Whether or not this works depends on what the different function types
return (a function assumes that the result variable is large enough to hold
its result value).

Arithmetic on pointers outside array objects.

Thiswill behave as expected (as if all memory were a suitable array).

Subtracting pointers not pointing to the same array object.

This will behaveas if all memory were a suitable array.

Comparing pointers to different aggregates.

This will not cause an error (pointers are compared by address value).

Assigning overlapping objects.

This will generally work only for objects of size 4 bytes and smaller.

Modifying const object via non-const pointer.

This will not be detected as an error. Similarly for volatile .

Type clashes on external identifiers.

These will be notbe detected. The compilermay be able to give a warning
if the clash is within one source file.

Uninitialized automatic storage.

This has undefined contents.

Using a function result when no value is returned.

This yields an undefined value.

7 H-8 Appendix H- Implementation specific behavior
A macro argument consisting of no tokens.

This will substitute no tokens into the macro body. A warning will be
given.

Macro arguments are not parsed for preprocessing directives.

If the result of ## is not a valid token, an error message 'Illegal token' will be
given.

-
u

u
u

u
u

u
u

u
u

u
u

u
u

u

n
n

	Front Cover
	Part I - Prospero C Operation
	Contents
	1: Introduction
	2: Simple Edit, Compile and Link
	3: Operation Of The Workbench
	4: Operation Of The Compiler
	5: Operation Of The Linker
	6: Operation Of Object Programs
	7: Operation Of The Librarian
	8: The Symbolic Debugger
	9: The Cross-Reference Generator

	Part II - Implementation Details
	Contents
	1: Introduction
	2: Standard Features
	3: Input And Output
	4: Storage Allocation
	5: Interfacing To Assembler

	Part III - Language Definition
	Contents
	1: Introduction
	2: Environment
	3: Object Types And Conversions
	5: Interfacing To Assembler ???
	4: Object Names And Scopes
	5: Lexical Elements
	6: Declarations
	7: Expressions
	8: Statements
	9: Preprocessor
	10: Bibliography
	Index

	Appendices
	A: Source Language Syntax
	B: Compile-Time Errors
	C: Run-Time Errors
	D: ASCII Character Set
	E: Mixed Language Programming
	F: Definition Of Terms
	G: Implementation Limits
	H: Implementation Specific Behavior

	Back Cover
	Spine

